‘Beautiful energy sandwich’ could power next-generation solar and lighting

St John’s physicist co-leads research that could revolutionise manufacture of cheap electronics and solar cells
Professor Sir Richard Friend. Credit: Nordin Ćatić

Researchers have achieved a new level of control over the atomic structure of a family of materials known as halide perovskites, creating a finely tuned ‘energy sandwich’ that could transform how solar cells, LEDs and lasers are made.

Due to their remarkable ability to absorb and emit light, and because they are cheaper and can be configured to convert more of the solar spectrum into energy than silicon, perovskites have long been touted as a potential replacement for silicon in solar cells, LEDs and quantum technologies.

However, their instability and durability have, so far, largely limited perovskite devices to the laboratory. In addition, scientists have struggled to precisely control the thickness of perovskite films, and control how different perovskite layers interact when stacked together – an important step in building functional, multi-layered structures.

Now, a team of researchers led by the University of Cambridge has found a new way to grow ultra-thin layers of perovskite films so their atoms line up perfectly, which could enable more powerful, durable and efficient devices.

“We’ve reached a level of tunability that wasn’t even on our radar when we started,” said St John’s College Fellow Professor Sir Richard Friend from the Cavendish Laboratory, who co-led the research.

The researchers used a vapour-based technique to grow three-dimensional and two-dimensional perovskites one layer at a time, which enabled them to control the thicknesses of the films down to fractions of an atom. Their results, reported in the journal Science, could open the door to usable perovskite devices that can be produced at scale, using a process like that used to make commercial semiconductors.

Each layer in a semiconductor ‘sandwich’ does a different job in moving electrons and their positively-charged counterparts – called holes – around and determines how the semiconductors absorb or emit light. Together, the layers act like one-way streets that guide the electric charges in opposite directions, preventing them from bumping back into each other and wasting energy as heat.

In other widely used semiconductors, such as silicon or newer materials such as gallium nitride, the properties of the individual layers can be fine-tuned using various methods. But perovskites, despite their excellent performance, have so far proved difficult to control in layered devices, due in part to their ‘chaotic’ atomic structure.

“A lot of perovskite research uses solution processing, which is messy and hard to control,” said Professor Sam Stranks from the Department of Chemical Engineering and Biotechnology, who co-led the research. “By switching to vapour processing – the same method used for standard semiconductors – we can get that same degree of atomic control, but with materials that are much more forgiving.”

The researchers also found they could engineer the junctions between the layers to control whether electrons and holes stayed together or apart – a key factor in how efficiently a material emits light.

Sir Richard said: “We can now decide what kind of junction we want – one that holds charges together or one that pulls them apart – just by slightly changing the growth conditions.”

Full story on the University of Cambridge website

News
Research

Related articles

A photo of Professor David R Midgley in his office with his new book, The Epic Modernist: Alfred Döblin
The novelist modernism left behind and the Cambridge scholar bringing him back

A new book argues that Alfred Döblin was one of the boldest writers of the 20th century and yet the English-speaking world is largely unaware of him

News
Research
Professor Andrew Woods sits on a bench looking at the camera in the grounds of St John's College, Cambridge
Energy professor identifies ‘huge window of opportunity’ to accelerate net zero progress

“We are throwing away extraordinary amounts of useful energy every day – and we don’t need to,” says Professor Andy Woods FRS, lead author of a major new Royal Society study

News
Research
Professor Richard Samworth in The Cloisters at St John's College, Cambridge
St John’s Fellow elected as one of the UK’s strongest mathematical minds

Seven Cambridge researchers, including St John’s statistician Professor Richard Samworth FRS, have been appointed Fellows of the Academy for the Mathematical Sciences

News
Research
Sarah Aguiar Monteiro Borges stands in front of a research information board at Harvard at a symposium
Psychiatry student named on prestigious Forbes’ 30 Under 30 List

Rising star at St John’s College recognised by global brand for her drive to improve youth mental health in Brazil and beyond

News
Research