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[II INTEGRATION IN R? AND R3

In the previous chapter we analysed a first example of how to generalise the idea of inte-
gration. The amazing outcome was that this new integration process we defined to compute
the length of a curve could be converted into a standard integral known to us to compute the
area underneath graphs. We will now look at integration in more detail but before we do this
we want to summarise the concept behind the standard integral process which defines the area
underneath graphs since we we will later convert all the integrals we are going to define in
higher dimensions into just standard integrals.

Let us consider the graph of a positive function f(z) defined on an interval [a,b] as in
F1a. xiii. We partition the area underneath the graph of f(z) and obtain a sum of the form
Sy f(&)(z; — zi—1) as an approximation for the area underneath the graph. & could either
be x;_1 or x; or indeed any arbitrary point in between z;_; and x;. In any case, taking the
limit for the differences z; — z; 1 tending to 0 we obtain the area underneath the graph. We
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denote this limit by ||éium Z fENz; —xim1) = / f(z)dx. Mathematicians call this integral
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the Riemann Integral®.
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x;—1) is called a Riemann limit. For a e i

Riemann sum &; has to be somewhere i . E i
in the interval [z; 1, z;] but the exact a=xody xhnh xu h ous=b x

position does not matter in the limit. FIG. xiii The Riemann integral.

In this chapter our task will be to define integration mechanisms in higher dimensions but
we will find that we will always be able to break down integration sums in higher dimensions
into Riemann sums and therefore into Riemann integrals. Therefore it will be important to be
able to recognise Riemann sums:

13 Riemann sum
A Riemann sum is a sum of the type

Z f€)(wi — mi-1) (40)
i=1

where all & € [x;—1,x;].

We will now investigate Riemann-type sums defined on curves, surfaces and volumes in
R? or R? over real valued and also vector valued functions. This will allow us to define inte-
grals along curves, surfaces and over volumes and relate these new integrals to ordinary one
dimensional Riemann integrals.

2Georg Friedrich Bernhard Riemann, 1826-1866.

PThere is another important concept of integration, the Lebesgue Integral, named after Henri Léon Lebesgue
(1875-1941). This will be studied in future Analysis courses. For our applications the Riemann integral is
sufficient.
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3 Line integrals

We will now look at a different type of integral over vector valued functions which we call
line integrals. The energy E a point mass gains by moving along a homogeneous force F' is
F Az where Az denotes the distance the point mass is moving in direction of the force. This
assumes that the point mass is moving parallel to the force, but what if we force it to move
at an angle to the force? In this case it is only the component of the force parallel to the
movement of the point mass that results in a gain of energy: FAx cosa where « is the angle
between the direction of the force and the movement of the point mass. We can write this more
conveniently as the scalar product between the vector F describing the force and the vector
Ax, the vector describing the movement: F = F.Ax = FAz cosa. But what do we do if the
force is not homogeneous? In this case the point mass might experience a different force (in
terms of strength as well as direction) at every point along the path describing the movement.
It now seems reasonable to solve this problem again using a Riemann-type limit where we look
at sequences of partitions of the path describing the movement. We then again assume that
between two partition points the movement is along a straight line and in addition along this
straight line the force is homogeneous, taking the value of the force at some point between these
partition points for the whole of this little straight line. It seems natural that in the limit this
will give the energy gained or required by moving the point mass through this force. Let us
call such a (possibly inhomogeneous) force a force field or more generally we define vector fields
to be vector valued functions assigning a vector from R" to each point in R” (or at least to a
subset of R").

14 Vector fields®
A wvector valued function F : R* — R" is called a vector field.
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F1G6. xiv Two dimensional vector field.

“Note that for a vector field the domain and the range have to have the same dimension.
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The three dimensional vector field

- F(x) = (42)

ﬁc,\a| N %c,\a|°E %w| 8

shown in F1G. xv has a spherical symmetry.

FIG. xv Three dimensional vector field.

Motivated by the idea of summing up scalar products in order to calculate the energy
gained by the movement of a point mass through a force field we partition the path ~(¢) and
obtain the sum

> F(y(t). (v(t:) = v(ti1)) - (43)

As before, we now study the limit of the sum in EQ. 43 for the sequence of partitions Z of [a, b]
with [|Z]| — 0. We call this limit the line integral of F along the path ~.

15 Line integrals
Given a vector field F : R" — R", and a path = : [a,b] — R". The line integral of F along the
path v is defined
[Feodax = lim SR (118) ~y(t) (44)
¥ 1Z2]]—=0

An alternative notation for the line integral is

/ F(x).dx = / Fi(x)dz) + Fa(x)dzy + ... + Fp(x)dz, . (45)
¥ ¥

Using Taylor’s theorem to first order on the increments ~(¢;) — «(¢;—1) the Riemann-type
sum Y F(v(t)). (v(t;) —(ti—1)) can be written to first order as

Y FE)A ()t —tiea) (46)
i
which we now recognise as a Riemann sum.

16 Line integral over continuous vector fields along differentiable paths
v : [a,b] = R" is a differentiable path then the line integral can be evaluated using a simple
Riemann integral:

b
/ F(x).dx = / F(y(t).~ (t)dt . (47)
Y a

Using the alternative notation we can write EQ. 47 in the following form?:

b b
/ Fy(x)dzy + ...+ F,(x)dz, = / Fl('y(t))@dt .+ / Fn('y(t))dldt )
¥ o .

dt dt
4Sometimes fab Fi(y(t))“tdt + ... is shortened to fab Fidzi+... . Note the danger of this notation: [ Fidwz;
still has to be taken along the path and does not mean that z1,...,z, can be considered as independent variables

for the integration.
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Example 3.1 Let us consider the vector field F(x) := (r%, r%, %)T given in FIG.xv and the

continuous path y(t) = (cost,sint,t)” along the circular heliz shown in Fic.x for t € [0,2n]
we find

cost

o [ (42)3 —sint w .
F.dx = — | t |dt= / — dt=1- . 48
/7 x /0 1+ Cols 0 (1+12)3 1+ 4n2 (48)
(1+t2)%

It is obvious that different Jordan descriptions of the same Jordan arc lead to the same
line integral since the reparametrisations simply correspond to a substitution of a strictly
monotonous function. When calculating a line integral it is therefore essential to try to choose
a suitable parametrisation such that the resulting Riemann integral becomes simple. The fol-
lowing integration rules are obvious and are given without proof.

17 Integration rules for line intergals

/7(aF+5G).dx = a[/F.dx—l—B[/G.dx, (49)

/ F.dx = /F.dx+/ F.dx , (50)
Y1D72 1 Y2

/F.dx = —/ F.dx with ~7(¢) =~(b—1), (51)
¥

/ F.dx
y

Example 3.2 Let F be the force acting on a particle moving along the curve C. The work done
by the force in moving the particle an infinitesimal distance dx is F. dx; this is the generalisation
to 3D of the 1D formula

IN

max ||F ||/ds (52)

t€la

work done = force X distance.

Hence the total work done by the force in transversing the curve C is

W:/F.dx.
c

We can parametrise the curve by the time t at which the particle is at a point x:

t t
W = / F.— dt / F.vdt
ta

which is the time integral of the rate of doing work.

Using Newton’s second law of motion F = mx (it is easiest to think of the case when there
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is just one force, e.g. gravity or rocket propulsion in deep space), gives
t d’x dx
W = — | . dt
/ta (m dt2> dt
/t” 1 d [(dx dx gt
= —m— _—
w2 dt \ dt dt

B 1 dx dx\1%
- RM\aa)],
= gain in kinetic energy.

Example 3.3 Let
F(x) = (y,,0).

We will evaluate the line integral [F.dx for the curve C parametrised by x = (t,t%, z(t)) where
a>0 and 0 <t <1. (Obviously, it does not matter what z(t) is). We have

1 d d 1 1
/F.dx:/ <y—$+$—y> dt:/ (t“+tat“1)dt:/ (a4 1)t"dt =1.

Note that the answer is independent of a, i.e. the same result is obtained for different paths.
In general, if different paths join the same end points, then the corresponding line integrals are
not equal; as we shall explain in the following chapter they are in this case because ydx + xdy
is an exact differential(i.e. because F(x) can be written as the gradient of a function ¢(x)).

We can verify this result for a straight line path from (0,0,0) to (1,1,0) along paths parallel
to the azes. Let
Ci : z=t,y=0 for 0<t; <1,
Co : z=1,y=ty for 0<t,<1.

On Cl
dx
F.dx =F._~dt; = (0,%1,0).(1,0,0)dt; =0.
1
On C2
dx
F.dx =F. Edtg = (tQ, ]_,0)(0, ]_,0) dt2 = dtg .
2
Hence

1
/ F.dX:/dtQZI.
C1+Co 0

4 Plane surface integrals in R? and volume integrals in R3

We will now proceed to defining integration over volumes and start with looking at functions
defined on plane rectangles R := [a,b] x [c,d] in R?. Let us therefore consider a real valued
function f(z,y) : R — R on this rectangle R.
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F1a. xvii Graph of f(x,y) over the rectangle

FiG. xvi Partitioning the rectangle R. R

Following similar ideas as before we will partition the rectangle R into small rectangles
as shown in F1G. xvi. We therefore take a partition Z, of the z-axis and a partition Z, of the
y-axis with partition lengths || Z;|| and ||Z,|| respectively. In case f(z,y) > 0 on the rectangle
R then it is obvious from F1G. xvii that for small || Z;|| and [|Z,|| the double sum

Zf &,77] - Ti— 1)(yj_yj—1) (53)

is an approximation for the volume underneath the graph of f(z,y). & and n; are as before
chosen arbitrarily in the intervals [z;_1, ;] and [y;_1,y;] respectively. It is now very natural
to consider the limit of this sum when the partition lengths || Z;|| and ||Z,|| both tend to 0
independently.

18 Integrals over a rectangle
The real valued function f(z,y) is defined on the rectangle R = [a,b] % [¢,d]. The integral
[ [z y)d(z,y) is the limit

/Rf(ﬂv,y)d(x,y) = lim Zf fzan] — Ti— 1)(yj - yjfl) ) (54)

1221l 2y[| =0 %

with £Z [zi—1, 2] and n; € [y;—1,y;]. Instead of [ f(z,y)d(x,y) we may also use the notation
fR z,y)dS.

We will now turn to the question how to calculate these new limits iz Hl|1|IZn | Z f(&smji)(
z y|[—0
%i—1)(y; — yj—1) and find that they can be written as two successive Riemann 1ntegrals

/fxy T,y) = iz HZyHOZf&,nJ i — 2i—1)(Yj — yj-1)

= lim lim Zf (&, mi) (5 —yj—1) p (x5 — xi1) (55)

[|Z2]|—0 | ||Zy]|—0 =

||Z}irf;0/cdf(§i,y)dy (21 — 71-1) /(/ f:vydy>
/ab/cdf(m,y)dydx.

This of course assumes that the inner integrals fcd f(z,y)dy exist for all € [a,b]. In the same
way we could of course first integrate along the z-axis and then along the y-axis provided that
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in this case the inner integrals fab f(z,y)dz exist for all y € [¢,d]. The main achievement of
our finding is that this again gives us a very simple way of calculating the complicated double
limits [ f(x,y)d(z,y) in terms of two successive simple one dimensional Riemann integrals.
This result is known as Fubini’s theorem®.

19 Fubini’s theorem in two dimensions
The real valued function f(x,y) is defined on the rectangle R = [a,b] X [c,d]. If the integrals

fcdf(x,y)dy exist for all x € [a,b] then

/Rf(x,y)d(w,y) Z/ab /Cdf(ﬂ:,y)dydw, (56)

and if the integrals f; f(z,y)dx ezist for all y € [c,d] then

/R f(z, y)d(, ) = / ' / " Flay)dady (57)

Example 3.4 Let us consider the real valued function f(x,y) = xye_(‘”Q"'yQ) on the rectangle
= X . e graph of f(x,y) is given in F1G.xviii The integra Tye~ T
R =[1,4] x [1,2]. The graph of f(z,y) is given in Fic.xviii The integral [, zye=(""*¥)d(z,y)

computes the volume underneath the graph. We obtain

2 4 2 —(z24y?) r=4
/ Iye_(’”2+y2)d(x,y) - / xye—(:vQ-i-yQ)dx dy = / _ye - 77 dy
R 1 1 1 2

B /2 yef(y2+1) _ yef(y +16) e20 _ o—17T _ p=5 4 o2
1

F1G. xviii Graph of f(z,y) = zye—(@*+v")
We can now easily generalise integrals over rectangles to integrals over cuboids’ in R3.
20 Integrals over 3-dimensional cuboids
The real valued function f(z,y,z) is defined on the cuboid Q = [a,b] X [c,d] X [e, f]. The integral
fo(x,y,z)d(w,y,z) is the limit

/Qf(xayaz)d(xayaz) . 1201, HZyHZ ”H%[]Zf glanjalf'k)( — T 1)(yj - yj—l)(zk - Zkfl) ) (58)

with & € [ri1, 23], 1} € [gj—1,;] and i € (261,25 Tnstead of [ f(z.y,2)d(z,y.z) we may
also use the notation fgf(w,y,z)dv.

°Guido Fubini, 1879-1943.
This could very easily be generalised to integrals over n-dimensional intervals [a1,b1] X [a2,b2] X ... [an,bn]
in R™ but we want to restrict ourselves to n = 2 and n = 3.
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How can we interpret such a 3-dimensional integral over a cuboid? We can imagine
that the cuboid is made out of an inhomogeneous material with the mass (volume) den-
sity f(x). Then f(&,n;, pk)(zi — 2i—1)(yj — yj—1)(2k — 2K—1) is an approximation for the
masses of the small cuboids given by the partitions Z,, Z, and Z, and therefore the sum
> ik S Emjs ) (@i — 2i—1)(y; — yj—1)(2k — 2k—1) would obviously tend to the mass of the

cuboid in the limit lim .
122,12y |2 ][]0

Fubini’s theorem allows us again to break these integrals down into successive Riemann
integrals:

21 Fubini’s theorem
The real valued function f(x,y,z) is defined on the cuboid Q = [a,b] X [¢,d] X [e, f]. If the
integrals fef f(z,y,z)dz and fcd feff(x,y,z)dzdy exist for all x € [a,b] and all y € [c,d], then

/facy, (z,y,2 ///fxy, Ydz dy dx . (59)

We could have obviously chosen a different order of integration in [21]. Fubini’s theorem
therefore tells us in particular that the order of integration does not matter.

22 Exchange of order of integration
The function f(x,y) is integrable on the rectangle R = [a,b] X [c,d] then

/ab /cdf(x,y)dydx = /cd/abf(m,y)dxdy = /Rf(x’y)d(x’y) : (60)

provided all inner integrals fab f(z,y)dx and fcd f(z,y)dy exist for all y € [c,d] and all x € [a,b]
respectively.

Equation EQ.60 can of course also be used for more than two successive integrals. For
example a 3-dimensional integral fg f(z,y,z)dV is independent of the order of integration
provided all the successive integrals exist for all the required values of z, y, z. We call
f; fcdf(x,y)dy dr and fcd f;f(x,y)dw dy the iterated integrals of [, f(z,y)d(x,y). The con-
dition that all the successive integrals of the iterated integral have to exist should not be
underestimated It can for example very easily be shown that the two iterated integrals

fo [ fo G +y dy] dzr and fo [ fo G +y dm] dy both exist but their values are in fact different.

The reason why F‘ublm s theorem cannot be used in this case is simply that the inner integrals
fo G +y) dy and fo ot ) dz do not exist for z = 0 or y = 0, respectively and therefore the

conditions of [19] do not hold.

5 Integration over plane surfaces and Volumes

We can now integrate over rectangles in R? and also over cuboids in R?, but how useful is
that? What if we want to integrate over some different plane surface rather than a rectangle or
some different volume rather than a cuboid? This can very easily be incorporated in the theory
developed in SEC. 4 by using the characteristic function of a set B C R

we={ g TSR (61



30 Vector Calculus

Given a bounded® set B C R™, we can then find a rectangle (n = 2) or a cuboid (n = 3)
which completely contains B. We then continue the function f(x) defined on B to R by setting
the function values outside B simply to 0. We define the integral of f(x) over the set B as
the integral of the function f(x)xs(x) over R. In this way we can define an integral over
general plane surfaces and general volumes in R? or R? respectively simply by using the theory
developed in SEC. 4.

23 Integrals over plane surfaces
The integral of the real valued function f(xz,y) over the set S is':

/ f(z,y)ds = / F (@ y)xs () dS | (62)
S R

where R is a rectangle completely containing S. In particular

1S == /SdS : (63)

is called the area of S.

24 Integrals over volumes
The integral of the real valued function f(x,y,z) over the set 'V isi:

/f(m,y,z)dV = / f(xayaz)XV($7yaz) av, (64)
% R

where Q is a cuboid completely containing V. In particular

V|| = /VdV , (65)

is called the volume of V.

It should be noted that for these integrals to exist we do not only require the functions
f(x,y) or f(z,y,2) to be well-behaved but also the functions xs(z,y) or xy(z,y, z) need to be
well-behaved. This basically means that the sets S or V need to have a smooth (or at least
piecewise smooth) boundary. For this course we shall simply assume that the sets we want
to integrate over satisfy this condition and leave the details to future Analysis courses. It is
also immediately obvious how these integrals could be generalised to n-dimensional integrals.
Mathematicians call n-dimensional sets which are integrable in this sense Jordan measurable
and the corresponding n-dimensional volumes are called the Jordan measure.

It is clear why [gd(z,y) is defined to be the area of the surface S since the integral is
the limit of sums 3, .(z; — zi—1)(y; — yj—1) over the surface S. Some of these rectangles may
go slightly outside the surface S but in the limit the sum over the rectangles described by
(z; —xi—1)(yj —y;j—1) will approximate the area of the surface. In the same way we understand
why fv d(z,y, z) describes a volume. It is also immediately obvious from FIG.xvii that the
interpretation of [ f(x)d(x,y) as the volume underneath the graph of f(x) coincides with the
definition [24] of the volume fj, d(z,y,z) as in FIG. xvii.

8The theory easily generalises to infinite sets but for our applications the bounded case is sufficient.

"Note that this definition does not really depend on R as long as B C R, and also that the function values
outside B are not really needed.

fInstead of [ f(z,y)dS we may also frequently use the notations [ f(z,y)d(z,y).

Mnstead of [, f(z,y, 2)dV we may also frequently use the notation [, f(z,y, 2)d(z,y, 2).
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25 Integration rules

/v (@f (%) + fg(x))dV = o /V )V + /v g(x)dV (66)

/ rav = [ feav+ [ fav, (67)
ViUVs V1 Vo

where V1 and Vo are disjoint or at least disjoint up to boundary points. Similar rules apply for
plane surface integrals.

We can now easily apply Fubini’s theorem in order to evaluate these integrals:

Example 3.5 Let us take in two dimensions the plane surface S bounded by the unit circle
22 +y?> =1 and by z,y > 0. How do we calculate the integral [s f(z,y)d(z,y) of the real valued
function f(z,y) = zy? over S?
We embed S into the square R = [0,1] x
[0,1] and use Fubini’s theorem for the inte- _
gral of f(x)xs(x) in order to first integrate E
parallel to the z-azis on the interval [0, 1] N
and then parallel to the y-azis also on [0, 1]. . \
However, since f(x)xs(x) is 0 outside S it [ ‘
is clear that the upper limit of the integral B
parallel to the x-axis is not at 1 but actu-

ally at \/1 —y? and therefore depends on BV AR

the actual value of y which could be any-
where in [0, 1].
We therefore obtain

1 py/1—y2
/ zy’ d(z,y) = / / zy’dz dy
S 0 0

Lrg227°= 1—y?2 Ly2 gt 1
=0

It is now important to note that the upper and lower bounds of the inner integrals can depend
on the variables of the outer integrals (but of course not vice versa). Instead of first integrating
along = and then interacting along y we could have done it the other way round according to
[22]. We would then obtain the integral fol I t-a? zy’dydr = 01 wdx which will also
give % but is obviously more complicated.

Fic. xix S bounded by 22 + 4% =1; 2,y > 0.

Example 3.6 In the same way we obtain in three dimensions three successive integrals with the
boundaries of the inner integrals depending on the variables of the outer integrals. For example
if the continuous function f(x,y,z) is integrated over the volume V bounded by the ellipsoid z*+
y? + '24—2 =1, then we can calculate [, f(x,y, 2)d(z,y, 2) in the following way: for fived x and y
the lower and upper bounds for the z co-ordinate are —2+/1 — 22 — y? and 2,/1 — 2 — y2. Pro-
jecting the ellipsoid into the xy-plane gives the circle 2> +y? = 1 and for fized x we have y going
from —v/1 — x2 to /1 — x2. Finally projecting the circle on the x-azxis shows that x runs from

1— x2—y
—1 to 1. We therefore find / flz,y,z)d(z,y, 2z / / / (z,y,2z)dz dy dx.

1— mz—y
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Most of the time the most difficult problem of integration over plane surfaces or volumes
is actually describing the boundary of the plane surface of the volume correctly and easily
in the successive integrals. As we have seen in our simple examples, by choosing a suitable
order for the successive integrals the task of describing the lower and upper bounds could be
simplified significantly which would also influence how complicated the successive integrations
are. Therefore it is essential that we first think very carefully about a suitable order rather
than picking a random order. Sometimes using Cartesian co-ordinates may not be the ideal
solution for solving such an integral. We will study in SEC. 6 how a suitable substitution may
simplify such an integral.

Finally, and just for completeness, we generalise integrals over real valued functions to
integrals over vector valued functions simply by defining them as vectors of integrals over the
real valued component functions.

26 Integrals over vector valued functions
The integral of the vector valued function £(x) over the volume V is:

fv fi(x)dV
/ f(x)dV = : , (69)
v [is Fn(x) dV

and similarly for plane surface integrals.

6 Substitution rule

For the one dimensional Riemann integral the substitution rule

g(b) b
/ f(a)de = / Flg(t)g (t)dt (70)
g(a) a

plays a central role if we actually want to solve complicated integrals. In EQ. 70 the substitution
function g(t) is either strictly increasing or strictly decreasing which corresponds to ¢'(t) > 0 or
g'(t) <0 for all ¢ € (a,b) respectively. Since our definition of integrals over higher dimensional
functions follows the same ideas as in one dimension it is not surprising that a very similar
substitution rule holds in higher dimensions:

27 Substitution rule for integrals in R”
Ifg : B — B is a bijective transformation from the set B onto B = g(B) with either detJg(t) > 0
or detJg(t) < 0 for all t € B then

/ f@d(r,. . o) = / F(&(6)) detJg(6)] d(t,.. 1) . (71)
g(B) B

where |detJg(t)| denotes the absolute value of the determinant of the Jacobi matriz of the
transformation g(t). |detJg(t)| is called the Jacobian of the transformation g(t).

We call the function g(t) a substitution function and for the Jacobian we use the notation

d(z1,...,2n)

Wy = letg()] (72)



Integration in R? and R 33

The fact that either detJg(t) > 0 or detJg(t) < 0 for all t € B makes sure that the trans-
formation g(t) is invertible as explained in Part TA Differential Equations. This is completely
analogous to ¢'(t) > 0 or ¢’(t) < 0 in EQ. 70. The reason why we have to use the absolute value
|detJg(t)| rather than just detJg(t) is that by definition of the integral [, f(x)d(z1,...,zn)
we cannot keep track of the fact that under the substitution certain co-ordinate axes may
have inverted their directions and therefore we do not know if we need to introduce a suitable
number of minus signs. For example, in the one dimensional Riemann case, if the substitu-
tion function g(t) is strictly decreasing then the lower limit g(a) is be larger than the upper

limit g(b) provided a < b. But the Riemann integral fgg((ab)) f(z)dx corrects itself simply by us-

ing fgg(;b)) f(z)dz = — fgg(((:;) f(z)dz. The multidimensional integral fg(B) f(x)d(z1,...,z,) does
not keep track of such changes of directions but by taking |detJg(t)| as Jacobian rather than
detJg(t) just corrects a possible overall change in orientation.

Example 3.7 The area of the disc D: x> + y*> < R? is given by [pd(x,y). Describing the
disc in terms of Cartesian co-ordinates ultimately involves lower and upper limits of the form
+VR? — 22, it therefore seems much more natural to describe the disc in terms of plane polar
co-ordinates: T € [0, R] and ¢ € [0,2n] describes D. The Jacobi matriz of the transformation
r=rcos¢ and y = rsin¢ is

g - (cos¢ —rsinqb) , (73)

sing rcos¢

and therefore we find for the Jacobian 3((:’3; =r. Hence we find the well known formula for the
area of a disc:

D] = /Dd(ac,y):/OR/O%rwﬁdr:wRZ. (74)

28 Transformation to plane polar coordinates
The Jacobian for plane polar coordinates is

d(z,y)
= 75
arg) " 7
The transformation to plane polar coordinates is then given by
[ Sy = [ freosprsing o), (76)

where S and S describe the corresponding surface in the xy-plane or in the r¢-plane respectively.

29 Transformation to cylindrical polar coordinates
The Jacobian for cylindrical polar coordinates is

d(z,y, z)

— 2 = p. 77
2(p.6.2) 7

The transformation to cylindrical polar coordinates is then given by
[ienaden) = [ fowspsing.2) pdip..2). (78)

where V and V describe the corresponding volume in xyz-space or in ppz-space respectively.



34 Vector Calculus

30 Transformation to spherical polar coordinates
The Jacobian for spherical polar coordinates is

7d($,y,z) = r2sinf . (79)

d(r, ¢,0)

The transformation to spherical polar coordinates is then given by
/ flz,y,2)d(z,y,2) = / f(rcos ¢ sinf,rsing sinf, rcos@) r2sind d(r,$,60), (80)
% %
where V and V describe the corresponding volume in zyz-space or in rPl-space respectively.

For many applications the coordinate transformation is defined through its inverse rather
than through the function itself but actually inverting the coordinate transformation may prove
very difficult. However, the transformation of the integral in EQ.70 does not require us to
explicitly invert the transformation, all we need is the determinant of the Jacobi matrix of the
inverse transformation. In Part TA Differential Equations you found that the Jacobi matrix of
the inverse of a function is just the inverse matrix of the Jacobi matrix of the function. We
also know that the determinant of the inverse of a matrix is simply the reciprocal value of the
determinant of the matrix. We therefore find:

31 Jacobian of the inverse transformation
If g : B — B is a substitution function then g(t) is invertible and the inverse function g~
B — B is again a substitution function with Jacobian

1.

1
|detJg—1 (x)| = Aok (81)
or in other words:
d(z1,...,Ty) B 1
d(ty, . tn)  dliete) (82)
AR (L1 ,mmsTn)

Examples

Example 3.8 We will calculate, in two ways, the integral

I:/de,
R

1<z<2 and 1/z<y<e’.

where R is specified by

(i) Do the y-integration first. We have

2 e’ 2
efl)
f=/ (/ ydy)dx = / [3v°]}/ dz
r=1 y=1/x =1

2
= %/ (e** —1/z?)dx
1

= %(64—62—1)
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(11) Do the x integral first. We have

(L) (s ]

2

2

2
([ )
Iny

2

1 e e
= [y(2—1/y)dy+/1 ydy+/ y(2 — Iny)dy

2

= same as the previous answer.

The huge brackets (parentheses) in the first line of each calculation can be omitted without
creating ambiguity.

Example 3.9 We will calculate, in two different ways, the integral

I:/m2dV,
%

where V is the tetrahedron bounded by the four planes
z=0,y=0,2=0 and z+y+z=a.

The vertices of the tetrahedron are at (0,0,0), (a,0,0), (0,a,0) and (0,0, a).
(i) Do the x integral last. We have

a pra—r pra—T—y
I = // / 22 dz dy dx
0 JO 0
= // X (a — z —y) dy dz
o Jo
a

= /O%xQ(a—x)Qdm:g—o.

(11) Do the x integral first. We have

a a—z
'
o Jo
oy
a
1 4 @
= /0 ﬁ(a—z)dz:@.

Example 3.10 We will calculate the Gaussian integral I given by

o0 2
I:/ e Tdx
0

by means of a remarkably cunning plan.

) 0o 2 00 o, 00 0o 2
I° = e "dx e Vdy= e Y dxdy
0 0 o Jo

a—z—y
/ 22 dx dy dz

0
(a—z—y) dydz

W=

We consider
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We now change coordinates to plane polars given by x = pcos ¢, y = psin¢g. First we calculate
the Jacobian.

oz oz .
a—p—COS¢, 8—¢——IOSIH¢,
oy . dy
8p_sm¢, a¢—pcos¢.
Hence 5 5
8(]773/) 8_:; 3_2 2 : 2
= = pcos” ¢+ psin“p = p.
op,9) | G G
Thus

oo pm/2 00
I2:/ / ep2pd¢dp:z/ eiﬂdep:E
o Jo 2 Jo 4

and I = %\/’H‘ (taking the positive square root since the integrand is positive).

1
R I

where the region R is bounded by the lines

Example 3.11 We will evaluate

y=0,y=z,z+y=1 and z+y=2.

Since the boundaries can be expressed as either y = kx or x +y = ¢, this suggests trying
the new variables
v=z+y and v=y/z.

The Jacobian is given by

d(u,v) Uy Uy 1 1 x+y
a(x y) = v v = _l l = x2 ,
’ v 22
and
dw,y)  &°
o(u,v) z=+y

Thus

2 11
I://—dvdu:an.
1 Jo U

Note that if instead we had chosen v = y/x and v = x + y then the Jacobian would have
changed sign since the handedness of the system would not have been preserved. We would no
doubt have remembered to use the modulus of the Jacobian,

Of course, we could have done the integral fairly easily without changing variables.

7 Surface integrals in R

We studied line integrals in SEC. 3 motivated by the fact that the scalar product of force and a
displacement vector gives us the energy gained or needed along the movement of a point mass.
The scalar product plays a similar role if we study the flow of a fluid through a surface but
this time we have a two dimensional problem. Let us assume that we observe a straight and



Integration in R? and R 37

homogeneous flow of water with a flow density of f litres of water per second per metre square.
If we then put an open tube straight into the flow, and the tube opening has a surface of s
metres square, how much water will we collect through this tube? The answer is obviously fs
litres of water per second.

But what if we put the tube into the flow
at an angle o to the flow? Obviously the
effective surface of the tube opening seen
by the water flow is now reduced to s cos«a
and therefore the flow through the tube is

— 3 L8 fscosa. It therefore makes sense to assign
—_——y — fr J— .

R TRy = a vector to the flow of water F with the
_ —3 — —3 ——e

direction of F pointing in the direction of
the flow of water and the magnitude ||F||
being the flow density f. We also assign
a vector to the surface of the opening of
FiG. xx Flow through a surface S. the tube S with a direction normal to the
surface of the opening and the magnitude
IS|| being the area s.

By taking the scalar product F.S = fscos «a we therefore obtain the flow of water through
the opening of the tube even if it is held inside the flow at an angle a. But what if the flow
is not homogeneous? We would therefore have a vector field F(x) describing the flow density
of the water. F(x) might then vary with x in terms of direction as well as magnitude! If
we then ask how much water will low through the opening described by the vector S then
by now it is obvious to us what we have to do: we partition the (two dimensional) surface
into small surfaces S;; described by the vectors S;;, evaluate F(x) somewhere on each S;; at
(&,m;) and keep F(&;,n;) constant on the surface element S;;. Each of the vectors S;; is normal
to the corresponding S;; and the magnitude matches the area of S;;. If the surface elements
are small then the scalar product F(&;,n;).S;; obviously approximates the amount of water
flowing through S;; and summing over all these scalar products ZZ j F (&, n;).Si; approximates
the amount of water flowing through the whole opening. In case the shape of the opening
and the vector field f(x) are both well-behaved then we hope that the limit of this sum under
the partition lengths tending to 0 would exist and would therefore describe the flow of water
through the opening of the tube exactly.

Let us now formalise this procedure. The opening of the tube in our example is of course a
flat surface, which essentially means that all S;; in the above example point in the same direc-
tion. But there is in fact no need for this surface to be flat and that in the sum _,  F(&;, n;).S;;
all S;; point in the same direction. Being able to generalise this procedure to surfaces which are
not flat would allow us to calculate the flow of a vector field F(x) even through surfaces S in R?
which are not flat. The procedure we are going to follow is now straightforward generalisation
of the integration techniques studies earlier but before we can start we will first need to define
surfaces in a suitable way.

Let us assume that the vector valued function ®(u,v) describes the points on a surface S
in R?. For example the function

cos ¢ sinf
®(p,0) = sin ¢ sin @ (83)
cos 6

describes the surface of a sphere with radius one, the unit sphere, in R* as ¢ and  go through
the intervals [0, 27] and [0, 7] respectively. Another important example is that for a real valued
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function f(z,y) : D — R the vector valued function

®(z,y) = Y (84)
f(z,y)

describes the surface in R® which is given by the graph of the function f(z,y) as (z,y) goes
through the domain D.

The function ® : P C R?> — R3 is defined on the set P which obviously has to be a subset
of R? in order to generate a two dimensional surface S in three dimensional space. We want to
call P the parameter space of ® describing the surface S. ® itself is called a parametrisation of
the surface S.

F1a. xxi Surface S with parameter space P.

If we are now given a surface § with a parametrisation ® and parameter space P then we
can easily partition & by partitioning P in the usual way. The partition of P will obviously
result in a partition of S. Let Z, and Z, denote the corresponding partitions on P with
partition lengths || Z,|| and || Z,||. We now assume the surface to be flat on each surface element
generated by this partition. As in our earlier example the vectors S;; describe these small
surface elements in the way that the direction of S;; is normal to the surface element and the
magnitude matches the area of the surface element. Assume now that the vector field F'(x) is
defined everywhere on the surface & then we are obviously interested in the following sums

Z F é},m z] , (85)

where & € [u;—1,u;] and n; € [vj_1,v;] and the u;s and v;s correspond to the partition of P.
We then consider the limit of EQ.85 for the partition lengths || Z,| and ||Z,| tending to 0
independently. We will call this integral the surface integral of F over the surface S. We will
see later that this limit is in fact independent of the chosen parametrisation ®.

32 Surface integrals over vector fields
The function ® : P — R3 is a parametrisation of the surface S with parameter space P C R?
and F is a vector field in R3. The surface integral of F over the surface S is

/SF(X)'dS:|zu||}i|r§i|Ho%: (B(&mi))-8 %)

where & and 1; are in [ui—1,u;] or [vj_1,v;] respectively.

As before the definition [32] does not tell us how to actually compute the integral. Our
hope is of course that this very complicated integral would once more translate into simple one
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dimensional Riemann integrals (provided F and S are both well-behaved). Let us therefore
look more closely at the surface elements S;;.

Let us assume that the surface element S;; is flat. In addition, just like for the proof of the
substitution rule [27], we approximate the surface element S;; using the parallelogram spanned
by the points ®(u;—1,vj-1), ®(u;,vj—1) and ®(u;j—1,v;). In the limit | Z,|| and ||Z,|| tending
to 0 this should give the correct surface integral.

The parallelogram is spanned by the vectors ®(u;,vj_1) — ®(u;—1,vj—1) and ®(u;—1,v;) —
®(uj—1,vj—1). We know that the cross product of two vectors a x b gives a vector normal to the
plane spanned by a and b with the magnitude ||a||||b|| sin & where sin « is the angle between a
and b. But ||a||||b|| sin « is equal to the area of the parallelogram spanned by a and b. Therefore
we can take the surface element S;; to be the cross product of ®(u;,v;—1) — ®(u;—1,v;_1) and
<I>(ui_1, Uj) - @(ui_l, Uj_l):

Sij = (Q(ui,vj_l) —@(ui_l,vj_l)) X (@(ui_l,vj) —@(ui_l,vj_l)) . (87)

We assume that ® is smooth such that we can use the Taylor expansion for the two increments
of ® in EQ. 87:

3@(%,1, Ujfl)

@(ui,vj,l) — @(uifl,vjfl) = T(uZ — uifl) +.., (88)
0B (u; 1,05
B(u;_1,v;) — B(ui_1,0;_1) = %(vi—vﬂn... . (89)
We hence obtain:
o® 0P
Sij = % X % (’LLZ — ui,l)(vj — ’Ujfl) . (90)

It is now obvious that the surface integral can be converted into the plane two dimensional
surface integral [, F(®(u,v)). (% X %) d(u,v) over the (flat) parameter space P.

33 Surface integrals over differentiable surfaces
The surface S is parametrised by the function ® on the parameter space P, then the surface
integral of the vector field F over S is

/SF(X).dS - /PF(<I>(u,v)). (‘9‘1’(“’“) « ‘9‘1’(“’“)> d(u,v) . (91)

ou ov
For simplicity we use the notation

0P (u,v) " 0P (u,v)

dS =
ou ov

d(u,v) . (92)

Just like for integrals along paths we of course need to assume that the parametrisation ®
of the surface S is sufficiently smooth for the derivatives in EQ. 91 to exist. In case ® is only
piecewise differentiable (i.e. it can be split up in finitely many differentiable surfaces) then we
can simply integrate over each differentiable piece and add them all up. Therefore everything
we are gong to say about differentiable parametrisations of surfaces is in this way also valid for
piecewise differentiable parametrisations.

X

Example 3.12 Let us for ezample consider the vector field F(x) = %. We assume that F(x)
describes the flow density of a fluid. How much of the fluid flows through the (open) upper
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hemisphere x> + y> + 22> = R?, z > 02 In order to find dS for the upper hemisphere we
parametrise it using

Rcos ¢ sinf
d(x) = Rsin¢ sinf | . (93)
Rcos0

Taking the cross product of the two tangent vectors leads to

0® 0% Rcos ¢ cosf —Rsin¢ sinf
dS = — x—=| Rsinpcosf | x| Rcos¢sind | = R>sinfe,dfdp. (94)
90~ 0¢ .
—Rsinf 0

We therefore obtain for the flow of the fluid through the upper hemisphere

27 R 27 z
er . 2,
/ F.dS / R?sinf .e, db dp = / / sin 0df d¢p = 2 . (95)
0 0

0

It remains to be shown that the definition [32] of the surface integral is indeed independent
of the explicit choice of the parametrisation ®(u,v). If we assume that & (i, ) is a different
parametrisation of the same surface S with parameter space P, then we can obviously find a
function k : P — P such that ® = & o k. Using the chain rule and setting @ = r;(u,v) and
0 = ka(u,v) we find

0 _ 080k 0ROy . 0B _ 0% 0m 0% 0k

ou " i ou ovou ™ B " oaav T 9 ov (9¢)
Hence we find
OB 0%  [0® 0B\ 0k Oky Oko Ok o® 0%
ETi T (aaX%>(%W_%W (au a)de”m o)

where det.Jy, is the determinant of the Jacobi matrix of k(u,v). Therefore a reparametrisation
is simply a substitution and leads to the same surface integral up to a possible sign factor
depending on the sign of detJ,. We now also realise that the sign of the surface integral is not
uniquely defined in [32]. We could have taken the cross product the other way round and would
therefore have obtained the opposite sign. Of course we want to choose the same direction for
the normal vector %—f X %—f all along the surface but this still leaves us with two possible choices
leading to two different signs for the surface integral. Whenever the surface has an obvious
inside and outside then we always want to choose dS to point in the direction of the outside
of the surface, this we call the outward normal. However, not every surface has an obvious
outside and inside and in this case we just note that the definition of the surface integral [32]
is ambiguous in the sign factor and in order to have a well-defined surface integral we need to
give explicitly the direction of dS.

Example 3.13 The function ®(r,$) = (r cos ¢, rsinp,r) describes the surface of a cone Sy for
0<r<1,0<L ¢ < 2w Find the surface element dS and calculate the flow of the vector field

= (0,0, 1) through the surface of the cone. Compare this with the flow through the surface So
described by 2% +y? <1 and z = 1 with the normal pointing in negative z direction.

Using the right hand rule it is clear that the outward surface element is given by dS =
‘?921; BQd( $) = (—rsing,rcosp,0)" x (cos ¢,sing, 1)T'd(r, ¢p) = (rcos ¢, rsing, —r)d(r, p).
Therefore fSl F.dS = fol UQW(—r)dqbdr =—
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The surface Sy is flat and has obviously the surface element dS = (0,0,—1)Td(z,y). We
therefore find f52 F.dS = f12+y2<1(—1)d(3:,y) = —7 which is the same value as for surface Sy

(why?).
Let us repeat this for the vector field G = (0,0,2)T: fSl G.dS = fol UQW(—TZ)d¢dr = —%71'
whilst fs G.dS remains [, 24 2o (=1)d(z,y) = —m. We observe that in this case the integrals

are different. We will understand later when we discuss the Divergence Theorem why these
integrals match in the first case and why they don’t match in the second case.

Now we know how to integrate scalar products of surface elements and vector fields over
a surface. Just like for integrals along paths we are also interested in integrating just the
magnitude of dS. If we go through exactly the same methodology as before but look at sums
>_ij (&, m;)[ISi;|| instead we obtain an integral which for f = 1 obviously defines the area of
the surface §. Following exactly the same procedure as above we find:

34 Surface area integrals
The function ® : P — R> is a parametrisation of the surface S with parameter space P C R?
and f(z,y,z) is a real valued function. The surface area integral of f over S is

RECE e B IS51 (98)

where & and n; are in [u;—1,u;] or [vj_1,v;] respectively. The area of the surface S is defined
as

IS| = /SdS. (99)

Completely analogously to our earlier considerations we find that this integral can be

AP (u,v) , 0P(u,v) 8'1' (u v) 0P (u,v)
5. X5, willnow appear as X =5, -

converted into a Riemann integral where

35 Surface area integrals over differentiable surfaces
The surface S is parametrised by the function ® over the parameter space P then the surface
area integral of the real valued function f(x,y,z) over S is

/Sf(x)dS _ /Pf(<I>(u,v))H 8‘1’;1;’“) « 8‘1’;’;’”) ‘d(u,v) . (100)
In particular, the area of the surface S is given by
0P (u,v) 8@ U, U
R A e e o [k (101)
For simplicity we use the notation
_||o®(u,v)  0P(u,v)
dsS = H 5 X 5 d(u,v) . (102)

It seems that the main difficulty of solving surface integrals is finding dS for a surface
S. Once we have found dS then the integration is reduced to solving two successive Riemann
integrals. In EQ.94 we have already given dS for the (open) upper hemisphere of radius R.
The same result obviously generalizes to a whole sphere with radius R.
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36 Surface element of a sphere
The surface element of the sphere z2 + y? + 22 = r? parametrised by ¢ € [0,27] and 6 € [0, ]
s given by

cos ¢ sinf
dS = r2sinf| singsin® |dodp = r?sinfe,dddp = rsinfxdddgp , (103)
cos 0

and the surface area element is

dS = r?sinfdfde . (104)

Example 3.14 Find the surface area element dS of the paraboloid z = 2% +y?, 0 < 2z < 1 and
find its area.

We parametrise the paraboloid using the function ®(r,$) = (rcos ¢, rsing,r2)" with 0 <
¢ < 21 and r > 0. The outward surface element is given by dS = % X %d(r, ) =
(—rsing,rcosp,0)” x (cos¢,sing,2r)T = (2r2cos ¢, 2r?sing, —r)". Taking the magnitude
of dS we find for the surface area element dS = rv/1+4r2d(r,¢). Therefore the area is
S 2T eV drkdgdr = T(55 — 1).

For completeness we will define surface integrals over real valued functions as well as surface
area integrals over vector valued functions.

37 Surface integrals over real valued functions

The integral of the real valued function f(x,y,z) over the surface S C R® parametrised by
the function ® with parameter space P is defined by

/Sf(x,y,z)dS = Af(@(u,v))(ad’é%”) x ad’é’;’”)) d(u,v) . (105)

38 Surface area integrals over vector valued functions
The integral of the vector valued function F(x,y, z) over the surface S is defined by.

[s F1(®(u,v))dS

/ F(x)dS := Js Fo(®(u,v))dS | . (106)
S fs F5(®(u,v))dS

Examples

Example 3.15 We will find the normal to the surface S of revolution given parametrically by

®(p,z) = (R(z) cos ¢, R(z)sin g, z) .

The two variables z and ¢ parametrise the surface. Note that in cylindrical polar co-ordinates
(p, @, z) the surface is given by

p= (2 +¢%)? = R(2).
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We have
0P .
P (=Rsin¢$, Rcosg, 0),
38_@ = (R'(2)cos¢, R'(z)sing, 1).
z

These two wvectors span the tangent plane to S at the point with parameters ¢, z, as can be seen
from the Taylor series, taken to linear order:

B(p+0p, 2+ 02) = B(p,2) + aiéqﬁ—i— a—@é

The normal direction to S is therefore given by

88—((1; aatj (Rcos ¢, Rsin ¢, —RR')

and the unit normal is

(cos ¢, singp, —R')

:l: 1
(1+R?)>

Example 3.16 We will work out the vector and scalar elements of area for three different
surfaces.

(i) Let ®(x,y) = (z,y, 2(x,y)). Then, using subscripts to denote partial derivatives of the
function z,

0P 0P
— =1 z)> 7]-7
o= L0z), 2=z,
Thus
dS = (—2zg, —2y, 1) dz dy,
and

dS = (1 + 22 +22)3dedy > dudy.

(ii) Let ®(0,¢) = (asinfcos¢p, asinfsing, acosh), which represents the surface of
sphere of radius a. Then

%—?z(acosﬁcosqb, acosfsing, —asinf), 88:1;

so that

(—asinfsing, asinfcos¢p, 0),

dS = (sinf cos ¢, sin fsin ¢, cos 0) a? sin @ dfd¢p = X a®sin 0 dO dg,
where X is the unit vector in the radial direction, and dS = a*>sinfdfdep.
(11i) Consider the surface of revolution specified by (compare example 2.12)
®(p,z) = (R(2) cos ¢, R(z)sin ¢, z) .

We have 9% P
— = (—Rsin¢, Rcos ¢,0), 5y

) = (R'(#) cos ¢, R'(z) sin ¢, 1) .

Hence
dS = (Rcos¢,Rsing,—RR')dpdz
= (cos¢,sinp, —RNRdpdz,
dS = (1+R*:Rdpdz.
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I:/mde',
S

where S is the portion of the surface x +y+2z=ainx >0,y >0, z>0.

Example 3.17 We will calculate

Parameterising the surface with x and y, we have ® = (z,y,a —z —y), so
ds = (1,0,—1) x (0,1,—1) dz dy = (1,1,1) dz dy

and

dS =V3dzdy =secadzdy ,

where « is the angle between the plane and the horizontal. This has an obvious geometric
interpretation: dx,dy is the projection of dS into the x-y plane. Hence

I = \/5// zy dydz
0o Jo

a
= Q/ z(a — x)’dx
2 Jo
o

8v3

I:/de,
S

where S is the hemisphere x° + y*> + 22 = a?, z > 0. This is obviously going to be easiest in
spherical polar coordinates, so we write

Example 3.18 We will calculate

® = (asinfcos ¢, asinfsin ¢, acosh), dS = a*sinfdodg .

Of course, we must use Cartesian azes for the integrand: we must not be tempted to set ® =
(a,0,0) in spherical polar azes, despite the simplification that would result. Thus

2n  pw/2
I= / / (asin @ cos ¢, asin @ sin ¢, a cos 0)a’ sin O df dep.
o Jo

We integrate each component separately. It is a good idea to do the ¢ integral first, since some
of the terms integrate to zero.

w/2
I= / (0,0, 27a cos §)a®sin® do = (0,0, wa?).
0
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Table of integrals

The following table summarises all integrals we have studied in the previous chapter and how to
convert them into Riemann Integrals. «y(x) denotes a Jordan path defined on the interval [a, b]

fi(x)
and F(t) denotes the vector valued function F(x) = : . The surface S is parametrised
fm(x)
by the function ®(u,v) with parameter space P.
Integral notation corresponding integral(s)
b
Integral along ~ () / f(x)ds = / f(’y(t))H’y'(t)Hdt[lcm]
o a
b
Length of ~(t) /ds :/ ' (t) Hdt
ol
Jn fi(y ||’Y( )|l
Integral along ~(t) of F / F(x)ds =
¥
bf fm(y II’Y( )|l
Line integrals /F(x).dx = / F(’y(t)).’y (t)dt
n ab d(z)
Flat surface integral / f(z,y)dS = / / f(z,y)dydz
S a Je(x)
b rd(x)
Area of a flat surface / dsS = / / dydx
S a Je(x)
b rd(z) rhzy)
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P
< q’
Surface area integral f(x)dS = / f(®(u,v)) 0 8 d(u,v)
S P e
Area of a surface /dS :/ o X o d(u,v)
S P ou ov

Surface area integral of F / F(x)dS =
S

( [ F1(@(u,0))][ 5 x Gy [[d(u,v)

[ Fn(® (1, )| 22 x 22| (us, )




