Vector Calculus, Examples sheet 1

Dr M. Dörrzapf

++

- 1 The curve parametrised by $\gamma(t) = (a\cos^3 t, a\sin^3 t), 0 \le t \le 2\pi, a \in \mathbb{R}^+$ is called Astroid. Find its length.
- The curve defined by $y^2 = x^3$ is called *Neile's parabola*, named after William Neil (1637-1670). Find the length of the segment of Neil's parabola with $0 \le x \le 4$.
- 3 In \mathbb{R}^2 a path is defined in polar coordinates by $r = f(\phi)$, $a \le \phi \le b$ with some function f. Show that the length of the path is

$$L = \int_{a}^{b} \sqrt{(f(\phi))^{2} + (f'(\phi))^{2}} d\phi.$$

Sketch the paths (i) $r = a\phi$, $0 \le \phi \le 2\pi$, a > 0 (Archimedes' Spiral) and (ii) $r = a(1 + \cos \phi)$, $0 \le \phi \le 2\pi$, a > 0 (Cardioid) and calculate their lengths.

4 (i) A circular helix is given by

$$\mathbf{x} = (a\cos t, a\sin t, ct) ,$$

where $a, c \in \mathbb{R}^+$. Calculate the tangent \mathbf{t} , curvature κ , principal normal \mathbf{p} , binormal \mathbf{b} , and torsion τ .

(ii)* Explain generally why the tangent \mathbf{t} , the principal normal \mathbf{p} and the binormal \mathbf{b} form an orthonormal system. Show that the torsion can be written as

$$\tau = \frac{[\mathbf{t}, \frac{\partial \mathbf{t}}{\partial s}, \frac{\partial^2 \mathbf{t}}{\partial s^2}]}{\kappa^2},$$

where $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ denotes the scalar triple product $\mathbf{a}.(\mathbf{b} \times \mathbf{c})$. Verify this identity for the circular helix in part (i).

- 5 * A sculpture in the form of a conical helix is described by the path $\mathbf{x}(t) = (t\cos t, t\sin t, t)$, $2\pi \le t \le 4\pi$. The sculpture is made out of an inhomogeneous material which has a line density of μ at the starting point $t = 2\pi$ and increases linearly in t to 2μ at $t = 4\pi$. Find the mass of this sculpture.
- 6 Evaluate explicitly each of the line integrals

$$\int (x dx + y dy + z dz), \quad \int (y dx + x dy + dz), \quad \int (y dx - x dy + e^{x+y} dz),$$

along (i) the straight line path joining the origin to x = y = z = 1, and (ii) the parabolic path given parametrically by x = t, y = t, $z = t^2$ with $0 \le t \le 1$.

- 7 The vector force fields **F** and **G** are defined by $\mathbf{F} = (3x^2yz^2, 2x^3yz, x^3z^2)$ and $\mathbf{G} = (3x^2y^2z, 2x^3yz, x^3y^2)$ respectively. (i) Compute the line integrals $\int \mathbf{F}.d\mathbf{x}$ and $\int \mathbf{G}.d\mathbf{x}$ along the straight line from (0,0,0) to (1,1,1). (ii) Compute the line integrals $\int \mathbf{F}.d\mathbf{x}$ and $\int \mathbf{G}.d\mathbf{x}$ along the path $\mathbf{x}(t) = (t,t^2,t^2)$ from (0,0,0) to (1,1,1).
- 8 Sketch the graph of the function $f(x,y) = \cos(|x| + |y|)$ in the region $|x| + |y| \le \frac{\pi}{2}$ and find the volume underneath this graph.
- **9** The closed curve \mathcal{C} consists of the arc of the parabola $y^2 = 4ax$ (a > 0) between the points $(a, \pm 2a)$ and the straight line joining $(a, \mp 2a)$. The region enclosed by \mathcal{C} is \mathcal{S} . Show, by calculating the integrals explicitly, that

$$\int_{\mathcal{C}} (xy^2 dy + x^2 y dx) = \int_{\mathcal{S}} (y^2 - x^2) dx dy = \frac{104}{105} a^4.$$

where \mathcal{C} is described anticlockwise.

10 Show (without changing the order of integration) that

$$\int_0^1 \left[\int_0^1 \frac{x - y}{(x + y)^3} \, \mathrm{d}y \right] \, \mathrm{d}x = \frac{1}{2} \quad \text{and} \quad \int_0^1 \left[\int_0^1 \frac{x - y}{(x + y)^3} \, \mathrm{d}x \right] \, \mathrm{d}y = -\frac{1}{2}$$

Comment on these results.

- 11 A solid cone is bounded by the surface $\theta = \alpha$ in spherical polar coordinates and the surface z = a. Its mass density is $\rho_0 \cos \theta$. By evaluating a volume integral find the mass of the cone.
- 12 Use the substitution $x = \rho \cos \theta$, $y = \frac{1}{2}\rho \sin \theta$, to evaluate

$$\int_{\mathcal{S}} \frac{x^2}{x^2 + 4y^2} \, \mathrm{d}S \quad ,$$

where S is the region between the two ellipses $x^2 + 4y^2 = 1$, $x^2 + 4y^2 = 4$.

13 The region \mathcal{D} is bounded by the segments $x=0,\ 0\leqslant y\leqslant 1;\ y=0,\ 0\leqslant x\leqslant 1;\ y=1,\ 0\leqslant x\leqslant \frac{3}{4},$ and by an arc of the parabola $y^2=4(1-x)$. Consider a mapping into the (x,y) plane from the (u,v) plane defined by the transformation $x=u^2-v^2,\quad y=2uv$. Sketch \mathcal{D} and also the two regions in the (u,v) plane which are mapped into it. Hence evaluate

$$\int_{\mathcal{D}} \frac{\mathrm{d}x \mathrm{d}y}{(x^2 + y^2)^{\frac{1}{2}}}.$$

 $I\ would\ appreciate\ any\ comments\ and\ corrections\ from\ students\ and\ supervisors.\ Please\ e-mail\ md131@cam.ac.uk.$