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VI LAPLACE’S EQUATION

19 Laplace’s equation

As an application of the theory of multidimensional integration developed in the previous
chapters we will now study the solutions of a particular second order partial differential equation:
the Laplace equation

Ve = 0, (170)
and the corresponding inhomogeneous equation: the Poisson equation®

Ve = f(x). (171)

Both differential equations are particularly important in many areas of mathematics and
physics. If @ is for example the potential of the electric field E such that E = —V® then ®
satisfies Poisson’s equation

vip = P : (172)
€0
where p(x) is the charge density and € is the permittivity of free space. If we replace V& in
V2® by E then Poisson’s equation can be re-written as

V.E(x) = 4mp(x). (173)

Considering that the divergence V.E of the vector field describes where the vector field has
sinks or sources EQ. 173 simply says that the electric field E starts or ends (i.e. has sources or
sinks) only at points where there are charges (i.e. the charge density p(x) # 0).

Similarly to EQ. 172 the potential of the gravitational field G satisfies
V2® = 4nGp(x), (174)

where p(x) is the mass density and G is the gravitational constant and therefore the gravitational
field starts (i.e. has sources) only at points where there is mass.

Using EQ. 155 we can easily see that =! is a solution of Laplace’s equation in R? \ {0}.
The corresponding vector field V® = % is the divergence free vector field of a point charge
which we have already considered in EQ. 42.

Poisson’s equation is obviously a linear differential equation and Laplace’s equation is the
corresponding homogeneous equation. Due to the linearity of Poisson’s equation the most
general solution to Poisson’s equation @ is given by a particular solution to Poisson’s equation
®,, plus the most general homogeneous solution, which is the most general solution to Laplace’s
equation W. In order to prove this statement we need to show two things: first ®, + ¥ are
solutions to Poisson’s equation and secondly there are no others. From V(®, + ¥) = V®, +
V¥ = f(x) + 0 it is obvious that ®, + ¥ is a solution of Poisson’s equation. Conversely, if
we assume that there is a solution ® of EQ. 171 which is not of the form &, + ¥ then b — o,
would obviously satisfy V(& —®,) = f(x) — f(x) = 0 and therefore  — &, would be a solution

#Simon-Denis Poisson, 1781-1840.
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of Laplace’s equation and is consequently included in the most general solution W of Laplace’s
equation. But this means that ® = ®, + ¥, for some ¥, contained in ¥ which contradicts the
assumption that @ is not of the form &, + U.

Since the general solution of Poisson’s equation is a particular solution plus the general
solution to Laplace’s equation means that is now first important to analyse the general solution
of Laplace’s equation. Let us therefore at first concentrate on solving Laplace’s equation and
we will come back to Poisson’s equation in SEC.23. To start with we look at the Laplace’s
equation in two dimensions 823%’3/) + 82(§(§’y) = 0 and transform the Laplacian into plane polar
coordinates as in EQ. 148. The Laplace equation in plane polar co-ordinates is therefore given

by

19 <T8¢>(7",¢)> L 1o ¢)

ror or r2  O¢? 0. (175)

We first try to find a particular type of solutions of the form ®(r, ¢) = R(r)P(¢). At this
stage we of course do not have any guarantee that solutions of this type exists. If such solutions
do exist then we call them separable solutions. Substituting ®(r,¢) = R(r)P(¢) into EQ. 175
leads after re-arranging to

T 0)
reor )= )

The left hand side of EQ. 176 is a function of r only and the right hand side is only a function
of ¢ we therefore find that the left hand side and the right hand side of EQ.176 have to be
equal to a constant £ € R. We therefore find two separated differential equations

P'(¢) = —kP(9), (177)

R(r) = k. (178)

(176)

r o
R(r) or

EQ. 178 has three possible types of solutions

P(¢) = acos(Vkd) +bsin(Vke) , k>0, (179)
P($) = a+bt , k=0, (180)
P(¢) = aeVF +pe VR k<o, (181)

but considering that continuity of P(¢) requires P(0) = P(2m) only the first of these three
solutions can lead to non-trivial solutions. This also means that & > 0. Furthermore P(¢) =
P(¢+2m) for any ¢ requires that vk = n for some n € N. Therefore the only possible solutions
for P(¢) are the solutions P, (¢) = acos(n¢) + bsin(n¢) with k& = n?. Substituting this back
into equation EQ. 178 for the radial component R(r) leads to

r%(rR'(r)) = n’R(r). (182)

Using the trial function R(r) = c¢r® we can easily find the general solution ¢r™ + dr~". And
therefore we have found separable solutions of Laplace’s equation

O, (r,p) = (cr™ +dr ")(acos(ng) + bsin(ng)) , (183)

for each n € N. It is clear that any linear combination of these separable solutions are again
solutions of Laplace’s equation (which are in fact not separable). We have therefore found
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infinitely many solutions to Laplace’s equation. It can be shown that any solution to Laplace’s
equation can be written as a series expansion in terms of separable solutions:

o0

d(x) = Z(cnr” + dpr™ ") (ap, cos(ng) + by, sin(ng)) . (184)

n=0

This will be considered further in the Part IB course Methods. Ultimately we want to find
solutions of Laplace’s equation satisfying certain boundary conditions. For example if we were
looking for a solution @ of the two-dimensional Laplace equation which satisfies that ®(0) =0
and ® = cos ¢ on the unit circle with ¢ being the angle of the standard plane polar co-ordinates
then our earlier considerations show that the separable solution ®(r,¢) = r cos ¢ is a solution
to this boundary value problem. But whether this is the unique solution to this boundary value
problem remains to be investigated which will be done in SEC. 21. In exactly the same way we
could look for separable solutions of the three dimensional Laplace equations using EQ. 155.
Laplace’s equation can of course equally well be separated in Cartesian co-ordinates. Which
co-ordinates are most suitable for the separation depends mainly on what is most suitable to
describe the boundary conditions.

We will now study the boundary value problem of the Laplace equation in three dimensions
and then later the boundary value problem of the Poisson equation in more detail. But before
we continue we will need to rewrite the divergence theorem in a form which allows us to study
the properties of the Laplace operator V2 more easily.

20 Green’s theorems

If we are given two real valued functions (which we want to call scalar fields) ¢ and 1) defined
on some domain G then we can construct a vector field F := ¢ V1. The divergence of F is then
given by

VF = Vo.Vip+dpV3). (185)

We can now use the divergence theorem on V.F and obtain for any volume V which is contained
in G that [, V.FdV = §,, ¢V¢.dS. If we define n to be the normalised outward normal to
the surface JV then dS = ndS. Using the directional derivatives theorem [40] we can write
V1).dS as g—ﬁdS where g—ﬁ is the directional derivative of ¢ in direction n. We obtain Green’s
first theorem:

66 Green’s first theorem
The scalar fields ¢, : G C R — R satisfy for any volume V C G

/ (pV + V$.V1p) dV 7{ dV.dS
v 0

v
_ 7{ svpnds = ¢ ¢2%as . (186)
oV oy On

where n is the normalised outward normal vector to the surface JV such that dS = ndS.

Green’s first theorem can be regarded as integration by parts for three dimensional volume
integrals in the sense that fv V ¢.V1)dV can be written as a partially integrated two dimensional
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surface integral for which V¢ has been integrated minus a three dimensional volume integral
over the integrated ¢ times the twice differentiated V24

/VV¢.V1/)dV = év ¢V¢.d3—/v¢v2¢dv. (187)

If we write down Green’s first theorem again but now with ¢ and ¢ exchanged and then
subtract this equation from the original EQ. 186 we obtain Green’s second theorem.

67 Green’s second theorem
The scalar fields ¢, : G C R — R satisfy for any volume V C G

- oh  0¢
| @vro—vergav = 4 (sba—n— a—n) as, (188)

where n is the normalised outward normal vector to the surface AV such that dS = ndS.

21 Harmonic functions

A solution to Laplace’s equation is called a harmonic function. In SEC.19 we have given
examples of harmonic functions and in particular we have shown that using linear combinations
of separable solutions we can construct other solutions.

68 Harmonic functions
A function ¢, is called harmonic on the volume V if it satisfies Laplace’s equation on V:
V2p(x) =0 VxeV.

Let us assume that 1 is harmonic on some volume V. We can then apply Green’s first
theorem and set ¢ = v to obtain

207 — i
/v||v¢y| Qv = 7gV¢ands. (189)

In case the boundary condition is such that 1(x) = 0 on the whole boundary 9V then obviously
[ ng—ﬁdS = 0. This means that [, | V4]|*dV = 0 and since the continuous function || V1||* >
0 we have |[V4||?> = 0 Vx € V and therefore 1(x) = constant ¥x € V. But since #(x) = 0 on
the boundary 0V we find that the constant is actually 0 and therefore ¢ (x) = 0 Vx € V.

69 Harmonic functions with trivial boundary conditions
The function v is harmonic on the volume V C R®. If ¢)(x) = 0 Vx € OV then

p(x) = 0  VxeV. (190)

In case we have two harmonic functions ¢ and ¢2 on some volume )V with the same values
on 9V, we then find that ¢ := ¢1 — ¢o satisfies (x) = 0 for all x € 9V and therefore 1) = 0

on the whole of V according to [69]. Boundary conditions which fix the value of a harmonic

function on the boundary of a volume V are called Dirichlet boundary conditions®.

Johann Peter Gustav Lejeune Dirichlet, 1805-1859.
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70 Uniqueness theorem for harmonic functions with Dirichlet boundary conditions
The functions ¢1 and ¢o are harmonic on the volume V and satisfy the same Dirichlet boundary
conditions ¢1(x) = ¢po(x) for all x € OV then

P1(x) = ¢a(x) VxeV. (191)

Since 1(x) = ¢ for ¢ € R is harmonic on any volume V and satisfies the constant Dirichlet
boundary conditions 1)(x) = c on 9V we therefore immediately obtain from [70] that a harmonic
function which is constant on the boundary 9V has to be constant on the whole of V.

71 Constant harmonic functions
The function 1 is harmonic on the volume V. If )(x) = ¢ Vx € 9V, ¢ € R then

P(x) = ¢ VxeV. (192)

There are other types of boundary conditions which are important in mathematics and
physics:

72 Boundary conditions
A real valued function 1 defined on the volume V is said to satisfy

(1) Dirichlet boundary conditions if (z) is given as a function on the boundary OV;

(11) Neumann® boundary conditions if the directional derivative g—ﬁ is given on OV;

(113) boundary conditions of the mized type if the combination 81(/;—2() + f(x)y(x) is given
on the OV.

By using Green’s first theorem we can now also show in an almost identical way as for [70]
that Neumann boundary conditions fix a harmonic function up to a constant.

73 Uniqueness theorem for Neumann boundary conditions
The functions ¢1 and ¢o are harmonic on the volume V and satisfy the same Neumann boundary
conditions %r(lx) = %éx) for all x € QY then

¢1(X) = ¢2(X) +c¢c VYxeEV , (193)

for some constant c € R.

So far we have only used the information contained in Green’s first theorem when we put
¢ = 1 for some harmonic function 1. Instead, we now take Green’s first theorem and set ¢ =1
on the whole of the volume V. We then have V¢ = 0 and for any harmonic function 1 we find
that fv (¢V2¢ + V¢.V1/)) dV = 0 and therefore fav V1.dS = 0. This does of course not mean
that V1 is perpendicular to dS everywhere but it means that the scalar product averaged along
the whole boundary is 0.

74 Harmonic average
A harmonic function 1 is harmonic on the volume V then it satisfies

VydS = 0. (194)
2%

¢ Carl Gottfried Neumann, 1832-1925.
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Using [74] we can now prove an important mean value theorem for surface integrals of
harmonic functions over spheres (see example 6.4 for a proof with ¢ = 0).

75 Mean value theorem for harmonic functions
A harmonic function 1 on V C R? satisfies

1
c) = x)dS 195
#(c) /S e (195)

47 R?

where Sg(c) is the surface of a sphere with radius R centred at the point c.

Theorem [75] essentially says that the average value of a harmonic function averaged over
the surface of a sphere is the same as the function value at the centre of the sphere. This
immediately shows that the global maximum and the global minimum of a harmonic function
defined on the volume of a sphere has to be on the boundary of the sphere. For any connected
volume V we can now easily argue that we can fill up the volume using spheres and therefore
argue that the global maximum and the global minimum of the harmonic function will have to
be on the boundary 9V of the volume V.

76 Global extrema of harmonic functions
The global mazimum and the global minimum of a harmonic function 1 defined on the volume
V lies on the boundary 0V unless 1 is constant on the whole of V.

To conclude this section we now consider a harmonic function 1 defined on a volume V
with Dirichlet boundary conditions on 9V: ¥ (x) = f(x) Vx € 9V for some given function f(x).
Let Fr be the set of all (differentiable) functions, not necessarily harmonic, on V satisfying the
same Dirichlet boundary conditions on 9V:

Fr = {w:w(x) = f(x) Vxe oV} . (196)

Obviously 9 € Fy but because of [70] ¢ is the only harmonic function contained in Fy. Let us
consider [, |Vw|*dV for some w € F:

/Vw.deV - /V(w—¢+¢).V(w—¢+¢)dv
Vv Vv

= /V(w—¢).V(w—¢)dv+z/V(w—¢).v¢dv+/ W ep||*>dV
v % %

2 | V(w—1).VipdV v 2dv
=z /V (w—1). V¢ +/v|| ol

using Green’s first theorem for the last equation. But since w = 1 on the boundary 9V and
V24 = 0 on the whole of V we find that the first two integrals of the last expression in EQ. 197
vanish.

77 Harmonic functions with the same Dirichlet boundary conditions

Among all (differentiable) functions Fy on V with the same Dirichlet boundary conditions f(x)
on OV as the harmonic function ¥ we find that 1 minimises the integral over the norm of the
gradient:

/ IVwl2dv > / IVyl2av (198)
y y

for all functions w € Fy.
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22 Gauss’ flux theorem and Gauss’ law

We will now return to the study of the inhomogeneous problem, namely the study of Poisson’s
equation V2¢(x) = f(x) on some domain G. If we assume that ¢ is such a solution then the
vector field F := V¢ satisfies

VF = f(x) (199)

on any volume V contained in G. Integrating over EQ. 199

/v V.FV = /v F(x)dv (200)

and applying the divergence theorem to the first of these integrals leads to Gauss’ fluz theoremd.

78 Gauss’ flux theorem

The function ¢ is a solution to Poisson’s equation V2¢p(x) = f(x) on the domain G if and
only if the vector field F := V ¢ satisfies

/avF.dS = /vf(x)dV, (201)

for any (piecewise smooth) volume V C G.

We can interpret f(x) as the sinks and sources of the vector field F since it corresponds
to the divergence of F'(x). In other words f(x) describes the density at which points the field
starts and ends. For example, for the electric field f(x) describes the charge density and for
the gravitational field it describes the mass density. Gauss’ flux theorem essentially says that
summing over the charge density on the whole volume equals the fluz of the vector field through
the boundary.

We already know that 1 is harmonic on R3 \ {0}. If we define the corresponding vector
field F = V% = —%3 then we can apply Gauss’ flux theorem on some volume V which does not
contain the origin. We then obtain |, sy F-dS = 0. But if 0 is inside the volume V then we take

a small sphere around 0 with radius € which we call V, and define V such that V = VUV, and
V, V. disjoint with the exception of boundary points. We then find

j{ F.dS = j{ F.dS+}1{ F.dS
)% )% V.

= 0+7{ F.dS
OV

2 T
- - / / % e, sin0dfdp = —4r . (202)
0 o €

The same will obviously hold if we replace 0 by any other point xy. This result is known as
Gauss’ law.

79 Gauss’ law
For any volume V and any xo € R with xo & OV

X—X 4r ,xp €V
}[ S ds = { » 0 . (203)
av ||x — x| 0 ,xo@¢V
dConversely, if the identity of the integrals EqQ. 200 holds for all possible volumes V C G then obviously the
(continuous) integrands have to be the same and therefore EQ. 199 holds on G.
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X—Xo
IIxx—xo]

Gauss’ law makes it clear that K is the field of a point charge of strength 47 at the

point x.

23 Poisson’s equation

Using the results of the previous section we are now in a position to explore the solutions to
Poisson’s equation. We have found that the potential ¢ = —-——-—— for the field F = - X0

T 4nfx—xo]| 4T ||x—xo|*
corresponds to a point charge of strength 1 at the point x. Using the superposition principle
for linear differential equations, if we had a charge of strength « at the point a and a charge of
strength § at the point b the resulting solution would be just the sum

a x—a 6 x—Db
Flx) = — + — , 204
> 4r||x —al* 4 |x — b’ 204

with the corresponding potential

o 5
P = gk —a] " Tk —b] (205)

Adding up finitely many charges of strengths «; at the positions a; we would obviously
find

px) = =3 (206)

Tl - al

In case the charges are not located at finitely many points but are described by a charge
density we expect that a suitable limit process will result in the sum in EQ. 206 to be replaced
by an integral and the charge strengths «; will go over to the charge density f(x). We will
give this result without proof but it can in fact easily be shown by substituting EQ. 208 into
Gauss’ flux theorem EQ. 201, exchanging the order of integration and using Gauss’ law. We
then obtain a solution to Poisson’s equation with ¢(x) — 0 as x — oo (see the third method
in example 6.5).

80 Solutions to Poisson’s equation
For Poisson’s equation V?¢ = f(x) defined on some finite volume V we can set f(x) = 0
outside the volume V and obtain a solution®

1 fly)

4r Jps [x =yl

P(x) d(y1, Y2, Y3) » (207)
where the integral is taken over the whole R®. This solution satisfies the boundary conditions
d(x) = 0 as x = 00. The corresponding vector field is given by

Fx) = = [ IOEY 40 . (208)
4 Jrs  |lx -yl

[80] gives of course only one particular solution with the boundary conditions ¢(x) — 0
as x — oo. If a specific problem needs to be solved under different boundary conditions then
solutions of Laplace’s equation have to be added (as solutions of the homogeneous problem) in
order to achieve the required boundary conditions.

°Note that [ps is in fact only an integral [|,.
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Examples

Example 6.1 Mazwell’s equations for electromagnetic fields are

P

VE = » (209)
€o

V.B = 0 (210)
0B

E = —— 211

V x 5 (211)

oE
VxB = EO/LOE + /I:Oj (212)

Here E and B are the electric and magnetic fields; p and j are electric charge density and
current density; €, and p, are constants (the permitivity and permissivity of free space) and
they satisfy eopto = ¢ 2, where c is the speed of light. (This last equation shows that there is a
deep connection between electromagnetic fields and light.) All fields may depend on both x and
time t.

Note that there is some symmetry between the equations. Equations (1) and (2) are similar
except that (2) has no source on the right hand side. This is as expected, because the magnetic
charge density is zero (there are no magnetic monopoles, at least in classical theory). Similarly,
equations (3) and (4) are the similar, expect for the absence of magnetic current in (3), and an
extra minus sign.

It is worth pausing for a moment to investigate the integral forms of these equations; it is a
nice example of the use of the divergence theorem and Stokes’ theorem and relates the equations
to physics that you might know, but it is not essential to the example.

If we integrate (1) over a volume V with surface S, we get

1
/V.EdV:—/ p(x)dV i.e. /E.dS:Q/eO
1% € Jv s

or, in words, the fluz of electric field across any closed surface is equal to the total charge within
the surface over €,. This is Gauss’s law. The same calculation for equation (2) shows that the
total flux of magnetic field across a closed surface is zero.

If we integrate (3) over an open surface S with boundary curve C, we get

/VxE.dS:— a—B.dS i.e. /E.dx:—i B.dS.

S g Ot c dt Jg

In words, this says that the circulation of the electric field (which is called the the EMF or
electromotive force) round a close curve is equal to the rate of change of flux through the curve.
This Faraday’s law of induction (and the minus sign relates to Lenz’s Law, about the effect
tending to oppose the cause).

Finally, if we integrate (4) over an open surface S with boundary curve C, ignoring the
first term on the right hand side (which would be a valid approximation for situations in which

c 2 is comparatively small), we get

/VXB.dS:uo/j.dS i.e. /B.dx:,uoI.
S S C

In words, this says that the circulation of magnetic field round a loop is equal to the u, times
the current through the loop. This is Ampére’s law.
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Going back to the original equations (1)—(4), we see that the structure of these equations
allows potentials to be constructed. The easiest case is when the fields are time independent (all
time derivatives are zero). In this case, equation (3) becomes V x E = 0, which implies that
there exists a scalar potential ¢ such that

E=-V¢
(the minus sign is conventional) and equation (1) then shows that ¢ satisfies Poisson’s equation
V.(-V¢)=-V2="L
€o
This is useful, because a great deal is known about solutions of Poisson’s equation.
If the fields are time-dependent, there is no scalar potential for E, since V x E # 0.

However, equation (2) shows that we can always find a vector potential for B:

V.B=0=B=VxA.

Of course, A is not uniquely determined: we can still add the gradient of any scalar field
without changing B. We can use this freedom is to choose A to satisfy V.A =0. (If V.A # 0,
we need to add Vx where x satisfies V.(A +Vx) =0, i.e. V2x = —V.A. This is Poisson’s
equation, and, for any given V.A, there is always a solution for x.)

Thus equation (3) becomes

vxg- 2VxA) Vx<E+8A>:0.

ot ot
. . 0A
This means that we can find a scalar potential for E + e :
0A 0A

Why are these potentials useful? If we write E and B in terms of potentials, then Mazwell
equations (2) and (3) are automatically satisfied. The remaining equations become

OA
v. (—— - V¢> =2 ie. V2p=-L
ot €o €o

(using the gauge condition V.A =0), and

VX(VXA):EO)U‘O

9 ( 0A
ot

= — — Vo | + ol
In the absence of sources, i.e. p = 0 and j = 0, the potential ¢ = 0 and this last equation
reduces to o

1 0°A

VA =S ——.

c? 0t2
This is the wave equation; it says that electromagnetic fields propagate like waves with speed ¢
— i.e. with the speed of light.

Example 6.2 We will prove a uniqueness theorem for solutions for the differential equation

y'—y=f(z),
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with Dirichlet boundary conditions

The method used is the basis for all other uniqueness theorems.

Suppose that the above boundary value problem has two solutions, y1(x) and ya(z), and let
Y (z) = y2(z) —y1(z). Then Y (x) satisfies the equation Y —Y = 0 and the boundary conditions
Y(0) =Y (1) =0. We will show that Y (z) = 0.

The technique is to show that, if Y (x) # 0, then a positive quantity is negative. The positive
quantity, I, is given by

1
I= / (Y")2dz.
0
Note that
I=0&Y'(z)=0& Y(x) = constant & Y (x) = 0.
The last implication follows because Y (0) = 0, so if Y (x) is constant, its value must be zero.

To obtain the contradiction, we integrate by parts:

. ! ! ! _ li 1 ! " _ ! 2
1_/0 V(@)Y (@) = ¥ ()Y ()| —/0 Y (2)Y" (2)dz = /0 ¥ (2)2dz < 0.

For the last equality we have used the boundary conditions and the differential equation for Y.
Thus I <0, which is the required contradiction.

Example 6.3 We will find separable solutions of Laplace’s equation of the form f(z,y) =
X(z)Y(y).

Substituting into Laplace’s equation

2 2
Pi L Pr_
ox? = Oy?

gives
X"(@)Y (y) + X(2)Y"(y) =0,

or, after rearrangement,

X'z)  _ Yy _ 4
X(z) Y(y) ’
—— ——

function of x  function of y

where C is a constant. This is the critical argument: the only function of x that equals a
function of y is a constant. The constant C' is not undetermined so far, but will be determined
by boundary conditions.

There are three cases to consider.
(i): C=0.

In this case
X"z2)=Y"(y) =0 = X(z)=azx+b and Y(y)=cy+d,
where a, b, ¢ and d are constants, i.e.

f(z,y) = (ax + b)(cy + d) .
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(ii) : C = k2> 0.

In this case
X"—k’X =0, and Y"+KY =

Hence
X (x) = aef® +be* | and Y(y) = csinky + dcosky,

where a, b, ¢ and d are constants, i.e.

f(z,y) = (ae*® + be ") (csinky + d cos ky) .

(iii) C=—-k%2<0.
This is similar to (ii) above, with x > y:
f(z,y) = (ae®¥ + be ) (csinkz + d cos kx) .
The question of which of the above solutions (or which linear combination of them) is

appropriate is decided by the boundary conditions. Obuviously, if the solution is periodic in x, or
has to vanish at two values of x, we must have C' < 0 so that the solutions are of the form (iii).

Example 6.4 We will prove a Mean Value Theorem for harmonic functions. (Note that a
harmonic function is one that satisfies Laplace’s equation.)

Let the scalar field ¢ be harmonic in a volume V bounded by a closed surface S. Consider

the function f(r) defined to be the mean value of v on a spherical surface S, given by ||x|| =,
i.e.
1
1) = g [, pb0)as

_ //27r (r,0, %) sin 0 d¢b B, (+)

where (r,0,¢) are spherical polar co-ordinates. We will show that f is a constant, and that
f(r) = ©(0).

We can show this result either by using Green’s Second Theorem, or directly as follows:

27r
@ = / / sm9d¢ do
dr
_ Op
N 47r7"2/ 45

= / Vp.xdS

472

= .dS
4rr? /Sr Ve

— /V2<pdV
%

4d7r?

= 0.

Further, setting r =0 in (x) shows that

1 T 2w )
100 == [ [ c00.0)sin0 dpas = p(0).
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and hence, since f(r) is constant,

We conclude that:

if ¢ is harmonic, the value of ¢ at a point is equal to the average of the values of ¢
on any spherical shell centred at that point.

Example 6.5 We will obtain the gravitational field due to a sphere ||x|| = R of uniform density
po, and total mass M = %WR%O i two ways.

First way: solve Poisson’s Equation.

We have
dnGpy for T <R
V2<p = {

0 for r>R.

We assume (or could prove) that ¢ and g—i are continuous at r = R. From symmetry consid-
erations we anticipate (or we could prove, e.g. by seeking separable solutions) that ¢ will be a
function only of r, i.e. p = @(r).

Using the expression for the Laplacian in spherical polar co-ordinates, for r < R we have

1 d [ 5dp
—— — ) =4nG
r2 dr (T dr) PO
which we can integrate:
d
r2d—f = %WG,O()?"3 +a,
and a
o = %WG,O()’I"Q - +0,

where a and b are constants. Since there is no point mass at the origin, ¢ is bounded there,
and hence a = 0.

Similarly, for r > R we deduce that

d
(70:__+Ca
T

where ¢ and d are constants. Since the potential @ is only defined up to a constant, we can set
¢ = 0; this means that ©(r) — 0 as r — o0.

Now we match the interior and exterior solutions at r = R to find b and d:

d d
%WG,O()RZ +b= R and %WG,O()R =g
S0
d= %WGpgR?’ and b= —2rGpoR?.
Thus
4 3 4 3 M
3r 3r2 72
GMr .

p = 57Gpo(r* —3R*), g=-Vo=—5nGprx=—

fE x for r<R.
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Note that outside the sphere the gravitational acceleration is equal to that of a particle of
mass M. Within the sphere, the gravitational acceleration increases linearly with distance from
the centre.

Second way: use Gauss’ Fluz Theorem.

From symmetry consideration we anticipate that g will be a function only of r, and will be
parallel to X, i.e. g = g(r)X. Suppose S is a spherical surface of radius r. Then

/ g.dS = / g(r)X.dS = g(r) 4nr?.
S S
Further,

if r>R then pdV = %WR?’pg =M,
if <R then pdV = %m"3p0 = Mr3/R3.

Hence from Gauss’ fluz theorem

~-GM/r?* r>a
g(r) = 3
—-GMr/R’ r<a
We can obtain ¢(r) by integrating g(r) = —dp/dr, using the boundary condition ¢ = 0 at

r = oo and continuity of p(r) at r = R.

Third way: use the general solution of Poisson’s equation.

The potential at a fized point X due to a mass distribution p(x) in volume V is given by

_ p(x)
o(X)=G , 7||X ] dV .

We choose polar coordinates with pole direction X, so that || X —x|| = (d?* + r? — 2rdcos 9)%,
where d = || X|| and (r,0,¢) are the polar coordinates of the point x. Then

R p7 2w
o(X) = G / / / Po _ 2 sin Odpdfdr
o Jo Jo (d?+r?—2rdcosf)>2

R pm 24in 0
= 27rG,00/ / rom -dfdr
o Jo (d?>+4r?—2rdcosf):
R

- 271'G,00/ "+ vl ~1d ~rlydr
0

If d > R (i.e. if X is outside the massive sphere), then the integrand is 2r%/d, which gives
o(d) = GM/d. If d < R, then the integrand is 2r?/d if r < d but 2r if r > d. In this case,

d 2,,,.2 R
o(d) = 27rG,00/ Fdr + 27rG,00/ 2rdr
0 d

which gives the required result.
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Remark Similar results hold for the electric field due to a uniformly charged sphere.

This is because the electric field E due to a point charge q1 at X1 is also given by an inverse
square law,
__ 4 X—Xx
dmeo ||x —xi|*

where €q is the permittivity of free space. Thus we can read off the equivalent results for elec-
trostatics by means of the transformations

1
471'60 '

g—E, mj—q, G—

For instance, Gauss’ fluz theorem becomes

1
/E.dS:—/pdV,
€0

S %
where p is the now the charge density. The differential form of this equation is

vE=",

€0

which is one of Mazwell’s equations. Further, if we introduce the electric potential @, where

E= _V(Pa
then
V2(,0 = _ﬁ )
€0

with solution in unbounded space

_ 1 p(x)
“”(X)‘zmov/ X"




