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I INTRODUCTION AND NOTATION

This course is about functions of more than one variable and develops the calculus of scalar
and vector quantities in two and three dimensions. A sound knowledge of these topics is a vital
prerequisite for almost all the later courses in applied mathematics and theoretical physics. It
is an applied course, meaning that you are expected to be able to apply techniques, but we will
not necessarily prove rigorously that they work, this will be done in future Analysis courses. In
the first part of the course, the idea of integration is extended from R to R? and R? (with an
obvious extension to higher dimensions): integrals along the x-axis are replaced by integrals over
curves, surfaces and volumes. Then the idea of differentiation is extended to vectors (div, grad
and curl), which is a basic tool in many areas of theoretical physics (such as Electromagnetism
and Fluid Dynamics). Two important theorems are introduced, namely the divergence theorem
and Stokes’ theorem; in both cases, an integral over a region (in R?® and in R2, respectively)
is converted to an integral over the boundary of the region. All the previous ideas are then
applied to Laplace’s equation V¢ = 0, which is one of the most important equations in the
whole of mathematics and physics. Finally, the notion of a vector is generalised to that of a
tensor. A vector can be thought of as a 3 X 1 matrix that carries physical information: namely,
magnitude and direction. This information is preserved when the axes are rotated only if the
components change according to a certain rule. Very often, it is necessary to describe physical
quantities using a 3 x 3 matrix (or even a 3 x 3 x 3... matrix). Such a quantity is called a tensor
if its components transform according to a certain rule when the axes are rotated. This rule
means that the physical information in the tensor (essentially the eigenvalues) is preserved.

By the end of this course, you should be able to manipulate, and solve problems using
vector operators; be able to calculate line, surface and volume integrals in R3, using Stokes’
theorem and the divergence theorem; be able to solve Laplace’s equation in simple cases, and
be able to prove standard uniqueness theorems for Laplaces and related equations; understand
the notion of a tensor and the general properties of tensors in simple cases.

The course is structured in the following way:
I INTRODUCTION AND NOTATION

Introduction, books, notation, important results from Part IA Differential Equations.
IT CURVES IN R

Parameterised curves and arc length, tangents and normals to curves in R3, the radius of
curvature. [1 hour]

IIT INTEGRATION IN R?> AND R?

Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylin-
drical and spherical coordinates; change of variables. [4 hours]
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IV VECTOR OPERATORS

Directional derivatives. The gradient of a real-valued function: definition; interpretation
as normal to level surfaces; examples including the use of cylindrical, spherical and general
orthogonal curvilinear coordinates; conservative fields. Divergence, curl and V2 in Cartesian
coordinates, examples; formulae for these operators (statement only) in cylindrical, spherical
and general orthogonal curvilinear coordinates. Solenoidal fields and irrotational fields. Vector
derivative identities. [5 hours]

V INTEGRATION THEOREMS

Green’s theorem in the plane, Divergence theorem, Stokes’ theorem, Green’s first and
second theorem: statements; informal proofs; examples; application to fluid dynamics and
electromagnetism. [5 hours]

VI LAPLACE’S EQUATION

Laplace’s equation in R?> and R3: uniqueness theorem and maximum principle. Solution
of Poisson’s equation by Gauss’ method (for spherical and cylindrical symmetry) and as an
integral. [4 hours]

VII CARTESIAN TENSORS IN R3

Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors
of second rank. Isotropic second and third rank tensors. Symmetric and antisymmetric tensors.
Revision of principal axes and diagonalization. Quotient theorem. Examples including inertia
and conductivity. [5 hours]

You will find the in the present lecture notes all relevant definitions, theorems and impor-
tant equations discussed in the lectures. However the notes are not meant to give a full pre-
sentation of the course material neither are they intended to replace attendance of the lectures.
The notes also contain worked examples at the end of each chapter. These notes and sup-
porting material can be found at http://www.damtp.cam.ac.uk/user/md131/vector_calculus.
Please send corrections and comments for improvements to md131@cam.ac.uk.
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Notation

The following is a table of the notation used in this course.
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v for all R real numbers
3 there exists C complex numbers
= there exists a unique / integers
7 there is no N positive integers, N:={1,2,3,...}
= defined equal Nop non-negative integers, Ny := NU {0}
= implication [a, b] closed interval z € Rt a <z <b
therefore (a,b) open interval x € R: a <z < b
because € contained in
& equivalence =4 not contained in
= defined equivalent A and
L should be equal to Vv or
such that 1 perpendicular
= identical O end of proof
~ approximately equal 3 contradiction
Examples
A={reR:z<2} A is defined to be the set of all real x such that z < 2.
ACB & rzcA=z€B A is a subset of B is defined to be equivalent to 'z is
contained in A implies that z is also contained in B’.
A=B = ACBANBCA the set A equals the set B is defined to be equivalent
to "A is a subset of B and B is a subset of A’.
{reR: 1<z <2} =]1,2] the closed interval [1,2] is defined to be the set of real

numbers between and including 1 and 2.

Labels

Equations are referred to by ’EQ. number’, e.g. EQ.1, theorems and definitions by [number]
e.g. [1] and sections by 'SEC. number’ e.g. SEC. 1. Finally, figures are referred to by FiG. iii.
For this course non-examinable sections are indicated with a * behind the number.

Vectors

We will denote vectors using underlining e.g. z in handwritten formulae and bold face type
e.g. x in print. In this course we will mainly operate in R?> or R3. The ith component of
the vector x, i.e. (x);, is always denoted z;. The notation x; would mean the ith of a set of
vectors {x1, Xg,... }. Unless otherwise stated, summation convention applies whenever there
is a repeated suffix. The standard scalar product is defined by x.y := z;y;. The norm ||x||

is defined to be the Euclidean® norm ||x| := /> " ; z?. Vectors x are usually assumed to be

column vectors

{a|

In

but in some instances we will need x to be a row vector. If it is required for clarity then may
explicitly write the transpose of the vector: xT = (
vectors also just by x = (z1,...,zy).

Z1,...,Zp) but otherwise we may label row

2Euclid of Alexandria, about 325BC-265BC.
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The vectors of an orthonormal triad are denoted by e;, where

€;.e; = (51']' .

The vector product between two vectors is defined by

XAYy=EXXYy=-YyXX=

The identity

€3
3 |5 and (X XY); = €kT;Yk -
Y3

ax (b xc)=(a.c)b— (a.b)c

can be obtained using the identity

€kij€kim = 0i10jm — Oim0jy -
x
The position vector is denoted r or also x, and in Cartesiansr = | y | or (r); = z;. The
z

length of the position vector is r, where r

rr = X.X.

Cylindrical polar co-ordinates (p, ¢, z) in R3.

Fia. i Cylindrical polar co-ordinates

In cylindrical polar co-ordinates the position
vector x is given in terms of a radial distance
p from an axis k, a polar angle ¢, and the dis-
tance z along the axis. With respect to Carte-
sian axes, the position vector is

x = (pcos ¢, psing, z), (1)

where 0 < p < 00,0 < ¢ <27 and —0 < 2z <
0.

In terms of the orthonormal basis related to the
cylindrical coordinates, e,, ey, €,, the position
vector is given by

r = pe, + ze,.
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Spherical polar co-ordinates (r,0,¢) in R3.

In spherical polar co-ordinates the position vec-
tor x is given in terms of a radial distance r
from the origin, a ‘latitude’ angle 8, and a ‘lon-
gitude’ angle ¢. With respect to Cartesian axes,
the position vector is

x = (rsinfcos ¢, rsinfsing, rcosh), (2)

where 0 <7 < 00,0 <0 <mand 0< ¢ < 2.
In terms of the orthonormal basis e;, ey, ey, the
position vector is given by

P,

F1c. ii Spherical polar co-ordinates

X = re,.

Functions

The functions we consider in this course map x € R” to a vector in R”™ which we denote by
f:R* - R™. Usually m and n will either be 1,2 or 3. The domain of a function f is denoted
by domf. For m = 1 we simply say a real valued function and for m > 1 we call the function
vector valued. Most of the time the domain and the range of a function is self-understood. If
a function is defined by simply giving an expression for f(x) then we mean that domf is the
maximal possible domain and the range is self-understood. For example, the function

R? - R
a ( ; > = f(z,y) = em@H) e
Yy

can simply be written as f(z,y) = e~ (@+¥)  Since domf = R? and the range is R we can
sketch the graph of such a function in a three dimensional co-ordinate system. The graph of
this particular function is given in the following figure.

Fia. iii Graph of f(z,y) = e—(@+y%)
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Sometimes it may be necessary to define functions by sticking different branches together
or by defining certain points separately. The notation we use in this case becomes clear in the
following example.

= () #(0,0)
f(x,y>—{ ) (4)

A function f(x,y) as simple as the one in EQ. 4 can in fact have a very complicated graph
as the following figure shows.

A
A\
B!

,‘3

s | N

2
. 2y
FiG. iv e

Partial derivatives

In the Part IA course on Differential Equations the concept of differentiation has been gener-
alised to functions f(x) of more than one variable leading to the concept of partial differentia-
tion. A sound knowledge of these results is required for this course. We will therefore give the
following summary of the main results.

Simple partial derivatives (e.g. W) are effectively ordinary one dimensional deriva-
tives where we simply treat all variables but one as constants. As a result all differentiation
rules we know from one dimensional derivatives can easily be applied to partial derivatives. For

example:
a 2 . z
%(ye) = 2zxsin(ye?)
8 2 . Z
%(ye) = z”cos(ye*)e”
O in(wty)  cos(z+y)
- z+y (z +y)?

Instead of W we may also write f, or simply f; where the latter should not be
confused with the first component of a vector f. In case we only want to keep some of the other
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variables constant but not all of them then we have to say explicitly which variables are being

kept constant e.g. (8f (z ;Ey’ )) keeps y invariant but not z and therefore takes account of any
changes in z if z is being varied. The standard partial derivative W can in this notation
also be written as (8f (z :’I:y Z)) . If none of the variables are being kept constant then we call
Y,z
it the total derivative e.g. df(z ’y’ 4#(2.92)  The chain rule relates these derivatives to simple partial
derivatives:
d of dey  Of dzxa of dxy,
— t t),... t — 4 ... — 5
dtf(xl( )axQ( )a axn( )) Or, dt Oxy dt + Oz, dt ) ( )
and more generally for f(z1,...,z,):
0 0 ox 0 ox
(—f> = f( 1) oA < ”) . (6)
ot Tiy 5Ty, a$1 ot Tiy 5Ty, a$n ot Tiy e Tiy,

A particular case of EQ. 6 for the function f(z,y,2) is for example
) O (0) 00 () 01 (2
oz ), 0z \ Oz Oy \ 0x 0z \ 0z
_ 9f, _f % ‘9_f of f
T oz b+ oy (833) 3z0 oz T oy oy (833) (")

The Analysis of the rate of change of a multi dimensional function can easily become
very difficult due to the fact that in multi dimensions we can approach points not only along
straight lines but also along complicated curves such as spirals etc.. If we assume that the
function is sufficiently smooth then these difficulties will not occur. We will leave it to future
Analysis courses to study this in more detail. For this course we shall always assume that all
our functions are continuous and sufficiently smooth and well-behaved (which basically means
that the functions are continuous and all the partial derivatives we need exist and are again
continuous). In this case a range of nice theorems hold:

1 Schwarz’s® theorem
Mized partial derivatives are independent of the order of differentiation e.g.:

Pflxy)  ?f(z,y) (8)
dxdy Oydr

2 Increments of real valued functions:

fx+h) - f(x) = agif)hl—k...vLagggj)

hn, + r(h) (9)

with ||(h||) — 0 ash—0.

® Hermann Amandus Schwarz, 1843-1921.
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Alternatively, we can write £Q. 9 as a matrix product or as a scalar product:

0 0
foetm) - o0 = (20 AN ) = emrm), (10)
or oxy,

with the gradient of a real valued function defined as
0f(x)
ox1

Vi) = |

9f(x)
OTn

Alternatively to the notation V f we may also use grad(f).

The amazing fact of [2] is that r(h) does not only tend to 0 as h — 0, it still tends to
0 even if divided by ||h||. Therefore f(x)+ V f(x).h approximates f to first order, in other
words, f(x +h) = f(x) + Vf(x).h + o(||h||). Analogously to the one dimensional case we say
that the function f can be approzimated linearly°.

For vector valued functions f : R® — R™

fi(x)

fx) = : ,
fm(x)
the gradient in EQ. 10 becomes a matrix, the Jacobi matriz Jg(x):
f(x+h)—f(x) = Jeg(x)h+r(h), (11)
with
of1(x) 9f1(x)
ox1 T OTn
Je(x) = : :
or1 e Oy
We then find r(h) = (ri(h),...,rn(h))" such that each 11£1m) — 0 as h — 0, in other words
TI(I:III) — 0 as h — 0. We therefore say r(h) = o(||h||).

Finally, Taylor’s theorem? generalises EQ. 11 to higher order:

3 Taylor’s theorem

Of(x), 1 0*(x)
f h - f ] Y a. o ) y DY
(x + h) (X)+2i: o, hi+ 5 2 8xi8x]~hzh’+
1 OFf(x)

It should be noted that in the multi dimensional case the linear approximation of differentiable functions is
valid in whichever way h approaches 0. Whether on a straight line, on a spiral or on any complicated curve,
the linear expression always approximates the increment. Compared to the one dimensional case f(z + h) =
f(z)+ f'(x)h+ o(h) it is now the gradient V f(x) that plays the role of the derivative. The amazing property of
smooth functions in higher dimensions is that the function can be approximated linearly in the multidimensional
sense by a vector of partial derivatives. Considering that partial derivatives are just limits along straight lines
it is remarkable that the set of these straight line limits describes a differentiable function in whichever way we
approach the point x, even if it is not on a straight line. On the other hand, as shall be shown in Analysis, for a
function which is not differentiable the information contained in the partial derivatives is usually not enough to
describe the behaviour of the function if we approach x along a path which is not parallel to a co-ordinate axis
not even along a straight path.

4Brook Taylor, 1685-1731, St John’s College (1703-1709, LL.B. 1709).
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with l|r|];1(|l|lk) — 0 ash — 0.

The linear term of the Taylor expansion EQ. 12 is of course just the Jacobi® matrix acting
on h. For many of our applications the linear term will be sufficient:

f(x+h) = f(x)+ Je(x)h+... . (13)

The real valued case m = 1 of [3] is particularly important for us. This case can also
be written in a simple way using the matrix of second order partial derivatives, the so-called
Hessian'® H(x).

1
f(x+h) = f(x)+Vf(x).h—|—§hTHf(x)h+... : (14)
with

f(x)  9*f(x) 9% f(x)
(9:[% O0r20x1 e O0xn,0x1
f(x)  %f(x) % f(x)
Hf(X) _ 0x10x2 315 R VI
P20 02(x) 821(x)

Examples

Example 1.1 Consider the function f(z,y) = 2% +yx. Then

of\ _ Or\ _
<%>y—2x+y, <3_y>m_$

Note that it is not really necessary to indicate which variable is being held constant, since
f(x,y) is unambiguously a function of x and y. There would be no confusion in writing

Example 1.2 Let f(x,y,2) = r where r = |x| = (22 +y* + 22)% Then

67" a 2 2 21 X
= — = = — 1
(), =gt vste . (15

o
or Yy or =z
@)% G, 9

¢Carl Gustav Jacob Jacobi, 1804-1851.

fLudwig Otto Hesse, 1811-1874.
&Note that Schwarz’s theorem says that Hy(x) is a symmetric matrix and therefore we know from Part TA

Algebra & Geometry that Hy(x) can always be diagnalised with real eigenvalues and using an orthonormal basis
transformation.

and similarly
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Example 1.3 We will find the partial derivatives of the Cartesian coordinate 1. We have
0 0
(ﬂ) =1, (ﬂ> =0, etc.
OL1 /15 g 02 / 4 2

Thus
om _ 1 i i=1\_,
or; |0 if j#£L [ D

where 63, is the Kronecker delta.
A similar result holds for any of the coordinates. For the ith coordinate, we have

a’L‘Z’
a’L‘j

= bij - (17)

We can now use this result to obtain (15) and (16) more neatly. Starting with that r? = x;z;
(don’t forget we are using summation convention), we see that

or 8(7‘2) _ 8($Zl‘z) —9 8%‘ _ 2@_.6% — 2$k-

2r—— = = —
T&xk aﬂik 8l‘k i 8mk
Dividing through by 2r gives
or Tk
— == 18
or, r’ (18)

which, in terms of suffiz notation, is the same as (15) and (16).

Example 1.4 Let
x(t) = (z,y) = (t%¢'),

flmy)=2"+y,

and let F(t) = f(x(t)). We will calculate % in two ways.

1. Using the chain rule. We have
dy

of\ _ ofy _ dr _ dy _
<8x>y_2x’ <8y>x—1, dt—2t, i

Hence from using the chain rule
dF  Of dz  Of dy " 3t
— =4+ = = =22t =4t .
dt Opdt oyar  Ute te

2. By direct substitution. We have
dF
F(t)=t"+¢e', and hence i 463 + et
The second (direct) method may seem much easier, but the chain rule allows us to find a
formula for the rate of change of a general function f(z,y) along the curve x(t) = ( 2, et ):

df (x(t)) _ Of dz | Of dy =2t f. (1%, ') + e f, (12, ¢!) .

dt Oz dt Oy dt

Example 1.5 We will find the gradient at x = 1, y = 1 of the curve of the family given by
f(x,y) = ¢, where f(x,y) = sin(rzy) + Y. We have
dy _ _fm(l, 1 mycos(mry) B

de N

—T
—T4e

fy(LL1)  macos(mzy) + eV
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Example 1.6 Consider the coordinate transformation (actually a rotation of the co-ordinate
azes through a fized angle 0)

T =wucosf —vsinf, y= usind +wvcosh.

We will calculate how the derivatives of an arbitrary function f(x,y) can be calculated in the
new coordinates. Let F(u) = f(x(u)). Then

oF _ 0f o=  Of 0y _ o | Gno?t
ou Oz 8u+8y ou 60808x+81n08y’
oF _ ofor ofoy _ . of | of
9 or 3U+8y 5 sm@ax—i-cosan.

Sometimes, indeed often, F(u,v) = f(x(u,v),y(u,v)) is written (incorrectly) by applied
mathematicians (but never by pure mathematicians) as f(u,v). Thus f refers to the value of
the function, whatever variables are used. The reason for doing this is that in many cases the
function referred to has physical significance, such as temperature, and it is very inconvenient
to refer to it by different letters according to which variables it is regarded as a function of.
Since all the other wvariables have standard names too, this abuse of notation never becomes
confusing. Then the above becomes

ar\ orN ., (0f
(50), = o (), +mo (5).
<g—£>u = —sinf (g—i)y + cos @ <g—£>m ,

Using this notation, it is of course essential to state explicitly the variable(s) that are held
constant in each partial differentiation.

Example 1.7 Let f(xz,y) be an arbitrary function, and let F(p,¢) = f(pcos ¢, psing) (i.e. F
has the same value as f but is calculated in plane polars rather than Cartesians). We will
transform the equation

0? 0?
>f P
ox? = Oy?
into polar coordinates. First, note that
0f _ 9pOF [99OF _  OF sing0OF

o  ozop oxos %% T T, 94’

or, omitting f and F,

3 = cos¢ 2 — sin¢ 3
or op p 09
Hence
0x2  Ox Oxr op p 0¢ op p 0¢

OF  sing 8_F>_sin¢£<cos OF sing 8_F>
dp p 0 p 0 dp p 0
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0’F sing cos¢p OF sing cos¢p 0 OF  sin’¢ OF

= cos’ + w5t -
¢ dp? p?  0¢ p  Op0dp p Op
_sing cosp 9 OF  sing cosp OF sin2¢82_F
p o¢ dp p2 09 p* O

On assuming the equality of mixzed derivatives we obtain

o’ f

sin?¢p OF 2sin¢g cos¢p 9’F  2sin¢ cos¢p OF  sin® ¢ 9°F
o2 o N

p  Op P 9pde p? op  p? 0¢*

2
F
:c032¢(?9?+

We can calculate giy’; by observing that ©r = psin (q§ + %) and y = —pcos (gb + %) Hence

after applying the transformations r — —y, y — x, ¢ — (¢ + %), we obtain

0% f 2F  cos? ¢ 8_F N 2sin¢ cosp 0’°F  2sin¢ cos ¢ 8_F cos? ¢ O°F

0
7 —q] 2 —
o~ " v 32 p op P Opd¢ p? op  p?> 0¢?

and hence that
OFf f PF 109F 1 &F

02 o T 0 T pdp 2 og
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I[I CURVES IN R?

In Part TA Differential Equations you studied how differentiation can be generalised to
higher dimensions simply by transferring the same limit technique from one dimension to higher
dimensions which ultimately led to the partial derivative. What about integration? The integral
over a one dimensional function is a limit process which chops up the area underneath the graph
of the function in lots of little rectangles and sums over their areas. Could this concept or a
similar mechanism easily be applied to functions of more than one variable and what would
this give us? Before we look at the process of dividing areas up into little rectangles in more
detail and then applying this to volumes and surfaces which are not flat we will first study a
much simpler structure that is length of a path.

Let us take the circle 22 + y?> = 172 which is obviously described by the path ~(t) =
(rsint,rcost) as the time ¢ runs from 0 to 2r. What is the length of this path (i.e. the
circumference of the circle)? We could take the perimeter of the inscribed square which is
44/2r as an approximation of the circumference of the circle but it is obvious that the real
circumference must be bigger. Obviously, the perimeter of the inscribed pentagon would be
a better approximation and indeed the perimeter of the inscribed hexagon is an even better
approximation. In fact, the perimeter of the inscribed regular n-gon becomes a better and better
approximation as n gets bigger and should ultimately tend to the correct circumference in the

r CcOS % _ [ rcos —%(f;l)
rsin % rsin —271—(;_1)
Using the linear term of the Taylor expansion of cos and sin this is approximately equal to

>ict
n
in the limit we expect this to give the circumference, and indeed

- —rsin —27r(f;1)
Z 27 (i—1)

i1 T COS

limit n — oco. The perimeter of the n-gon is given by » ",

T COS

i 2m(i=1)
( rsm2—7r(z.ﬁ 1) ) 27” For large n the higher order terms are negligible and therefore

2 " 2y
— =27r.
n n

Ie

Fia. v Inscribed square FiG. vi Inscribed hexagon

This limit process seems to rely on taking points on the path and replacing the arcs of the
path connecting these points by straight lines. The sum of the Euclidean lengths of these lines
would then approximate the length of the path. These ideas will form the basis of the following
section which will lead to the definition of the length of a general curve.

1 Parametrised curves

We now want to formalise the ideas developed above for a general (but continuous and smooth)
curve in R™. For our applications n would either be 2 or 3 but everything we are going to say
would of course also work for curves in spaces of dimensions higher then 3.



14 Vector Calculus

™ A continuous vector valued function () :

o N [a,b] — R™ is called a path in R™. If we
§ os] ‘o interpret ¢ as the time parameter then ~(t)
N . can be seen to describe the path of a par-

ticle moving from the point «(a) to ~(b)
. as times goes from a to b. How would we
define the length of this path ~(¢)?
F1G. vii A path ~(t) in R3,

Following our initial remarks, we take
a partition Z of the interval [a,b]
with t¢ = a and ¢, = b and t; <
t1 < ... < t,. Z could be an
equal distance partition but does not
need to be, therefore it is useful to
define the partition length || Z| to
be the maximum || Z|| := max|t; — _
ti—1]- We can now connect the . :
points y(¢;) with straight lines as in

Fi1G.viii and adding up the lengths
of these straight lines L(«,Z) :=
> iy Iy (i) —y(ti—1)|| would obvi-
ously approximate the length of the
path 4 (and in fact would always be
smaller than the real length of «).

FIG. viii Partitioning a path () in R?.

If we consider a sequence of partitions Z of [a,b] with the partition lengths || Z]| becoming
smaller and smaller and ultimately tending to 0 then the sequence of the corresponding L(7y, Z)
which are approximations for the length of v would obviously tend to what we should define as
the real length of the path 4(¢). In technical terms mathematicians call a path for which this

limit exists a rectifiable path. We denote such a limit by Héi”m .
—0

4 Length of a path
The limit lim) z| 0 L(7, Z) of a (rectifiable) path v(t) : [a,b] — R™ is called the length L(v) of
the path v and is denoted by

121l—0

/ds = lim L(v,2). (19)
¥

Let us now assume that each component function v;(¢) of the vector valued function ~(t)
can be differentiated, then Taylor’s theorem tells us that the increment 7(¢x) — vy(tx—1) can be
approximated by 7/(tx)(tx — tx_1) and therefore

L(v,2) = Y () =yt 1) (20)
k

can be approximated by

DI @ (= ) - (21)
k
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You will show in Analysis that the higher order terms do not matter in a limit where the
differences tp — tx_1 tend to 0 and therefore EQ.20 and EQ. 21 tend to the same value under
such a limit. We now of course recognise that the limit of [21] is just the standard integral

f: |7/ (t)||dt. This leads us to the very significant and amazing result that this new and at first
rather complicated looking limit we constructed above can in fact be converted into a standard
integral provided we can differentiate the path ~(t)!

5 Length of a differentiable path
If the path ~ : [a,b] = R™ can be differentiated, then the length of v is given by:

/, g5 = / ol (22)

We call 4'(t) the velocity, ||y (t)|| the speed and ~"(t) the acceleration of the path ~(t).

Example 2.1 The path ~(t) = (tcost,tsint) describes a spiral turning counterclockwise as t
runs from 0 to 2mn, n € N. What is the length of the spiral?

We find the velocity vector as ' = (cost — tsint,sint + tcost) and therefore its norm (the
2mn
speed) is ||¥'|| = V14 t2. Therefore f7 ds = 027m V1+#2dt = L(tv/1+#2 +sinh™'#) .=
™1+ 4r2n? + L sinh ™! (27n).

If we have two paths v, : [a,b] = R” and v, : [b,¢] = R" with a < b < ¢ and v, (b) = v4(b)
then we define the sum of the two paths v, & 7, as the path [a,b] — R" with

memo={ 10 R =

For the length of v, ®«, we obviously find that L(y; ®~5) = L(v;) + L(75). In the same way
we can restrict a path v : [a,b] — R™ to a shorter interval: «, : [a,t] = R"® with v,(u) = y(u)
for a < u <t <b. The length of the restricted path «, will then define a function of ¢ which we
want to call the arclength function s(t) of 4 with basepoint v(a) (or simply the length function):

st) = L(y,) = / ds | (24)
Y

t

s(t) obviously describes the length of the part of the path 4 a particle would travel if time went
from time « until time ¢. Using [5] we immediately find that s(¢) = f(f |7/ (u)]|du and therefore
s'(t) = ||¥'(t)|| which means that s'(¢) is simply the speed of «(t).

6 The sum of paths and the length function
If s(t) describes the length of the path « restricted to the interval [a,t] then s'(t) = ||v'(¢)|]. If
v is the sum of finitely many paths vy =, ® ... B, then

/ds = /ds+...+/ ds . (25)
Y Y1 Yk

Let T be some continuous injective curve in R®. In order to measure the length of the
curve I' we want to describe the curve with a path 4 which is not going back and forth on
parts of the curve, otherwise the length of the path would obviously not describe the length
of the curve. Therefore we require a path to be injective in order to describe the length of
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the curve described by the path. It is obvious that two injective paths describing the same
curve have the same length. If v, (¢) and v4(¢) are two injective paths both describing I" with
the same starting points then s5 (s (t)) gives the time at which the path 4, reaches the point
~1(t). Therefore we find v, (s, ' (51(t))) = v, (t). Obviously s, *(s1(#)) is a strictly monotonous
function®. Whenever two paths are related to each other by a strictly increasing function x(t):
Yo(k(t)) = 7,(t), then we call 4, a reparametrisation of ~;. Therefore two injective paths
describing the same curve I' are reparametrisations of each other.

An injective path ~ is called a Jordan path® and the corresponding curve is called a simple
curve or a Jordan arc. A Jordan path v describing a Jordan arc I' is called a Jordan description
of I'. In summary, the length function of a Jordan path is always strictly increasing and therefore
invertible. If two Jordan paths describe the same Jordan curve then they are reparametrisations
of one another with some continuous and strictly monotonous function x such that v, =
7, © k. Conversely, any continuous and strictly monotonous function x generates another
Jordan description 75 =, ok from a Jordan description 7y, of the Jordan arc I'. It is therefore
obvious that we can easily generate all Jordan descriptions of a Jordan arc I' out of just one
of its Jordan descriptions simply by applying suitable reparametrisations. It is obvious from
the limit definition that a reparametrisation should lead to the same length of the Jordan arc.
Using [5] we easily see for v5 = 4 o x that f ds = f v5(8) || dt = f vy (k(2)) || (t)dt =

fn(a) 17 (t)||dt = f ds.

7 Arc length of a Jordan arc

The arc length of a Jordan arc T is the length of a Jordan path, an injective and rectifiable path
~ describing I'. Two such Jordan paths describing I' have the same length and are reparametri-
sations of one another. We denote the length of a Jordan arc by fF ds

Let us for example calculate the length of
a hyperbolic cosine curve defined on the

\ ) / interval [—1,1]. We choose the parametri-

~—rl— sation
- (t) = b tel=1,1],(26)
v N cosht |’ T
T which is obviously a Jordan description of
F1G. ix Hyperbolic cosine cosh z. . We find:

1
(siriht)H dt:/ V1 +sinh®¢ dt = 2sinh1 . (27)
-1

Joo =,

Generally, if we want to calculate the length of a curve I'y described by the graph of a
function f(z) : [a,b] = R we can find a Jordan description v(z) = (z, f(z))" which leads to
the following length:

#In case the paths go in opposite directions along I" then the function is strictly decreasing rather than strictly
increasing.
"Marie Ennemond Camille Jordan, 1838-1922.
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8 Length of a curve described by a function f(z)
The length of a continuous curve I'y described by a function f(x):[a,b] = R is

/F ds / ,/1+ s (28)
f

Let us consider a Jordan path -« corresponding to a Jordan arc I'. Its length function
s(t) is strictly increasing in ¢ and let #(s) denote its inverse function. ¢(s) gives the time ¢ at
which the path will have reached length s from the starting point «y(a). We can now choose a
particular parametrisation of the time using #(s): we define the path 4.(s) := y(¢(s)) on the
interval [0, L(+y)] which is obviously just a reparametrisation of v(¢). Using the chain rule and
[5] we find that

D) i) A0 AW
e A P T SZOT 2

(s) describes the same Jordan arc T' as ~y(¥)

and therefore Hdvd_()

but «v.(s) is the parametrisation of I' with constant speed 1 everywhere along the path. This
parametrisation is obviously unique (provided we do not change the direction along the path).
We want to call it the canonical parametrisation of the Jordan arc T'.

Let us for example consider the circular helia® described by the Jordan path ~(t) =
(acost, asint, ct)T where a,c € RT and t starts at time 0.

The length function is obviously
s(t) = Va?® + ¢? t with inverse func-

tion t(s) = \/ﬁ The canonical
parametrisation of the helix is there-
fore
@ CoS W
¥.(s) = a sin W

F1G. x Circular helix for a = ¢ = 1.

Finally, on a technical note, [5] requires that the path = is of course differentiable since
we have to construct the derivative 4'(¢). In case the path is differentiable almost everywhere
except at a finite number of points n, then we can split the path up into a sum of n + 1
paths =;, each of them being differentiable. For each «; we can use [5] in order to compute
its length. Adding these lengths up leads to the length of 4. In this case mathematicians say
that ~ is piecewise differentiable. Most of what we said and what we are going to say about
differentiable paths applies in the same way to piecewise differentiable paths following exactly
this mechanism.

If a Jordan arc is closed we call it a Jordan curve. In this case a corresponding Jordan
description can only be injective on [a, b) since we obviously need 4 (a) = «(b) in order to close
the curve. But a Jordan curve does not allow any other points where injectivity is violated. For
example, a circle is a Jordan curve whilst an '8’ is not a Jordan curve. But we can of course
generate an '8’ using two Jordan curves.

€A circular helix is found by winding a line around a cylinder. In contrast, a conical heliz is found by winding
a line around a cone.
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Sometimes it may be useful to weight certain parts of a path more than other parts. For ex-
ample, if the path represents an object which is heavier at one end than at the other end. There-
fore we find a line density function f(x) describing the mass distribution along the curve. In or-

der to compute the total mass we obtain limits of the type l1m Z FyEN) Iy (te) — v (Ee=1)l-

We denote such a limit by [ o f(x)ds. It is clear that under the assumptions of [5] and for con-
tinuous functions f(v(¢)) we again find a simple integral just as in [5]:

9 Integrals over f(x) along paths
If the path ~ : [a,b] — R" can be differentiated then:

b
/jmez /fh@N#@Wt (30)
0% a

We easily find the following integration rules.

10 Integration rules for integrals over f(x) along paths
[(@r6 + potands = a [ feads+5 [ foods. 31)
¥ ¥ Y

/ f(x)ds = / Fx)ds + | f(x)ds . (32)
Y1972 Y1 Y2

We can now also define integrals over vector valued functions f(x) along a path 4 simply
by defining the integral to be the vector of integrals over the component functions:

fﬁy fl(m)ds
/ f(x)ds = : . (33)
" [, fm(x)ds

2 Tangents and normals to curves in R?

In geometry you are mainly interested in two types of theorems, classification theorems and
theorems relating local properties to global properties. For example, we know from simple
geometry that two Euclidean triangles are congruent (can be mapped onto each other using
translations, reflections and rotations) if and only if the lengths of their corresponding sides are
equal. This is a classification theorem. It allows us to determine whether two mathematical
objects are equivalent under some appropriate equivalence relation (here congruence) just by
comparing a small (or at least finite) number of computable invariants. We also know from
simple geometry that the sum of the interior angles of a Euclidean triangle is w. This theorem
relates a local geometric property (angles) to a global property (that of being a triangle).
Another example for a classification theorem is that two circles in the Euclidean plane are
congruent if and only if they have the same radius. Whilst the theorem that the circumference
of a Fuclidean circle of radius r is 277 is again a theorem that relates the local property of the
angle 27 with the global property of being a circle. We could give numerous examples for these
types of theorems in simple geometry, but if we want to continue the study of plane geometry
beyond figures constructed from lines and circles we realise that an arbitrary curve cannot be
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completely described by a few numbers such as lengths and radii. Instead we will find that the
basic invariant is curvature. Curvature is a function of the position on the curve.

In the previous section we found that a Jordan arc in R? can be uniquely described by
its canonical Jordan path «.(¢) such that [|v.(s)|| = 1 everywhere along the path. If we
reparametrise the path then obviously the speed ||v'|| changes and therefore first order deriva-
tives are not a suitable measure to classify the curve uniquely up to congruence. But it can be
shown that the second order derivatives can be used instead.

11 Curvature of a plane curve
~.(8) is the canonical Jordan path of the Jordan arc I'. The curvature k(s) of I' at the position
s is defined as the magnitude of the acceleration vector

k(s) = [|7"(s)]] - (34)

Along a straight path the velocity vector 4’ never changes direction and therefore a straight
path has curvature 0 everywhere. On the other hand a circle

vo(s) = (TCOS§> s €0,2mr] (35)

TSII’IF

has the constant curvature x = % at each point s on the circle. For a general curve I' at some
point s on I' we find that among all circles which are tangent to I' at this point there is only one
circle whose acceleration also matches the canonical acceleration along the curve. This circle is
called the osculating circle and the curvature of the curve at s is simply ra(}ius of the osculating
circle. If the radius is huge or even infinity for a straight line then obviously the curve is less
curved at this point whilst a small radius means a big curvature. In summary, the bigger the

curvature, the greater the acceleration and therefore the smaller the osculating circle.

10
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F1¢. xi Osculating circle to a Jordan arc.

So far we have only defined curvature to be non-negative. Sometimes it is useful to intro-
duce a (normal) direction and we would then define positive or negative curvature with respect
to this direction. This is called the signed curvature. It can be shown that the signed curvature
describes a curve uniquely up to congruence. Therefore we can obtain a classification theorem
saying that two Jordan arcs are congruent if and only if the curvatures match at each point.
This is the classification theorem we were looking for but one can also prove a theorem that
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relates the local property of curvature to a global property of being a closed Jordan arc, mean-
ing a Jordan curve: a Jordan arc is closed if and only if [ rds = ff k(s)ds = 2 where k(s) is
the signed curvature of ~.

We now want to apply similar ideas to curves in R?. It is immediately clear that the radius
of a plane osculating circle cannot be sufficient to describe curves in three dimensions. We will
in addition need a way of describing the curvature of the curve coming out of the tangent plane.
One finds that the following local properties define a curve in R? up to congruence.

12 Curves in R?
Let T be a Jordan arc in R® and let v, be the corresponding canonical Jordan path v, : [a,b] —
R3.

t = y.(s) (36)
is called the tangent and it is clear that ||t(s)]| =1 Vs.

ve(s)
p o= 2l (37)

e ()]l
is called the principal normal and k(s) := ||y2(s)| is the curvature. The binormal is given by
b:=txp, (38)

and the torsion T is the (negative) projection of the change in the binormal % onto the principal
normal:

ob

TZ:—g.p.

(39)

It is worth mentioning that ~.(s).y”(s) = 0 since 4.(s).v.(s) = 1 and therefore t, p and b
form an orthonormal system. The tangent and the principal normal form a plane tangent to
the curve which describes the movement of the curve to second order. In this plane there exists
an osculating circle and the curvature describes the size of the osculating circle just like in
the two dimensional case. The binormal is normal to this plane. If the curve describes a true
three dimensional movement then it will obviously leave this plane. The torsion describes how
strongly it leaves the plane. The minus sign in the definition is such that a movement outside
this plane towards the direction of the binormal has a positive torsion, as in the case of the
circular helix in F1G. x.

FiG. xii Tangent, principal normal and binormal for a circular helix.
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Examples

Example 2.2 (i) The curve given parametrically by
X= ¢(t) = (ata bt27 0)

is the parabola a’y = bx? in the x-y plane. The length of the curve from t =0 tot =1 is

GRS

1
= / Va2 + 4b%t? dt = whatever you get when you do this integral.
0

dx
— ||dt
dt

(ii) The curve
x = (t) = (5cost,4sint, 3sint)

lies on the cylinder (with elliptic cross-section) x?/25 + y?/16 = 1. Setting t = ¢, we see that
the ‘height’ z of the curve as it wraps around the cylinder is 3sin ¢, so it looks similar to a sine
curve wrapped around the cylinder. Clearly, the curve is closed: it joins back onto itself when t
increases by 2.

Note that it also lies on the cylinder x%/25 + 2%/9 = 1, so it is the intersection of the two
cylinders.

dy .

The (unit) tangent t is the unit vector in the direction 7 :

t = (—5sint,4cost,3cost)/5

The arc length, s, is given in terms of the parameter t by
dt

ds = ||—=||dt = bdt,
dt

so we could reparametrise the curve using s instead of t as follows:

x = (5cos(s/5),4sin(s/5),3sin(s/5)).

Then gt
I —(5cos(s/5),4sin(s/5),3sin(s/5)) /(25) = kp ,
Using the fact that % and p are unit vectors, we see that the curvature Kk = 1/5 and that the
principal normal p = —(5 cos(s/5), 4sin(s/5), 3sin(3/5))/5. Finally, the binormal b=t x p =
(0,—3,4)/5. Since % =0, the torsion T = 0. This is a little unexpected. It means that the curve
lies in a plane with normal (0,—3,4)/5 — which of course is now obvious: x.(0,—3,4) = 0.

We can see this in another way. The curve lies on the sphere v = 5. If we use polar
coordinates based on the z-axis instead of the z-axis, we see that t = 0 and ¢ = tan~'(3/4); the
curve is therefore a circle (a line of longitude).



