1. In a chemistry experiment a beaker of water is to be heated vigorously using a Bunsen burner and the temperature of the water is measured using a thermometer. A clock is started at $t=0$ and at $t=t_{\mathrm{A}}$ the heating is begun. The water begins to boil at $t=t_{\mathrm{B}}$ and heating is stopped at $t=t_{\mathrm{C}}$. at $t=t_{\mathrm{D}}$ the measuring is stopped. Draw a graph of temperature, H, against time, t, for the water.

Suggest mathematical functions which could be used to describe the change in temperature in the ranges a) $t_{\mathrm{A}} \leq t \leq t_{\mathrm{B}}$ and b) $t_{\mathrm{C}} \leq t \leq t_{\mathrm{D}}$.
2. Using a see-saw, six prisoners of similar height and weight would like to help their friends jump to the other side of a prison wall of height H. The rock nearby has a height of d (see figure below). Assuming that the see-saw is ideal, find the maximum ratio of H / d that still allows three prisoners can escape.

3. Evaluate the following definite integrals:

$$
\begin{align*}
& \int_{-1}^{1} d x(x+1)^{4} \tag{1}\\
& \int_{0}^{\infty} d x e^{-7 x} \tag{2}\\
& \int_{0}^{\pi} d x x \sin \left(x^{2}\right) \tag{3}
\end{align*}
$$

